BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, Lai E, Ishikawa H, Mattox C, Fujimoto JG. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464-470. [PMID: 15824218 DOI: 10.1001/archopht.123.4.464] [Cited by in Crossref: 202] [Cited by in F6Publishing: 189] [Article Influence: 12.6] [Reference Citation Analysis]
Number Citing Articles
1 Ha A, Lee SH, Lee EJ, Kim TW. Retinal Nerve Fiber Layer Thickness Measurement Comparison Using Spectral Domain and Swept Source Optical Coherence Tomography. Korean J Ophthalmol 2016;30:140-7. [PMID: 27051263 DOI: 10.3341/kjo.2016.30.2.140] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
2 Suh MH, Park KH, Kim H, Kim T, Kim SH, Kim S, Kim DM. Glaucoma Progression After the First-detected Optic Disc Hemorrhage by Optical Coherence Tomography. Journal of Glaucoma 2012;21:358-66. [DOI: 10.1097/ijg.0b013e3182120700] [Cited by in Crossref: 38] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
3 Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi A, Zangwill LM. Baseline Optical Coherence Tomography Predicts the Development of Glaucomatous Change in Glaucoma Suspects. American Journal of Ophthalmology 2006;142:576-582.e1. [DOI: 10.1016/j.ajo.2006.05.004] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 6.1] [Reference Citation Analysis]
4 Kim H, Lee JS, Park HM, Cho H, Lim HW, Seong M, Park J, Lee WJ. A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection. Transl Vis Sci Technol 2021;10:7. [PMID: 34003891 DOI: 10.1167/tvst.10.2.7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Folio LS, Wollstein G, Schuman JS. Optical coherence tomography: future trends for imaging in glaucoma. Optom Vis Sci 2012;89:E554-62. [PMID: 22488265 DOI: 10.1097/OPX.0b013e31824eeb43] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
6 Mizokami J, Yamada Y, Negi A, Nakamura M. Postural changes in intraocular pressure are associated with asymmetrical retinal nerve fiber thinning in treated patients with primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2011;249:879-85. [DOI: 10.1007/s00417-010-1565-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
7 Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95:909-914. [PMID: 21030413 DOI: 10.1136/bjo.2010.186924] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
8 Gedde SJ, Vinod K, Wright MM, Muir KW, Lind JT, Chen PP, Li T, Mansberger SL. Primary Open-Angle Glaucoma Preferred Practice Pattern®. Ophthalmology 2021;128:P71-P150. [DOI: 10.1016/j.ophtha.2020.10.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
9 Kim H, Park HM, Jeong HC, Moon SY, Cho H, Lim HW, Seong M, Park J, Lee WJ. Wide-field optical coherence tomography deviation map for early glaucoma detection. Br J Ophthalmol 2021:bjophthalmol-2021-319509. [PMID: 34301610 DOI: 10.1136/bjophthalmol-2021-319509] [Reference Citation Analysis]
10 Schuman JS. Detection and diagnosis of glaucoma: ocular imaging. Invest Ophthalmol Vis Sci 2012;53:2488-90. [PMID: 22562848 DOI: 10.1167/iovs.12-9483k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
11 Qian J, Wang W, Zhang X, Wang F, Jiang Y, Wang W, Xu S, Wu Y, Su Y, Xu X, Sun X. Optical coherence tomography measurements of retinal nerve fiber layer thickness in chinese children and teenagers. J Glaucoma 2011;20:509-13. [PMID: 21048509 DOI: 10.1097/IJG.0b013e3181f7b16c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJ. Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol 2014;98 Suppl 2:ii34-9. [PMID: 24934221 DOI: 10.1136/bjophthalmol-2013-304751] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 6.6] [Reference Citation Analysis]
13 Schuman JS, Pedut-Kloizman T, Pakter H, Wang N, Guedes V, Huang L, Pieroth L, Scott W, Hee MR, Fujimoto JG, Ishikawa H, Bilonick RA, Kagemann L, Wollstein G. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Invest Ophthalmol Vis Sci 2007;48:3645-54. [PMID: 17652734 DOI: 10.1167/iovs.06-0876] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 2.6] [Reference Citation Analysis]
14 Vizzeri G, Bowd C, Medeiros FA, Weinreb RN, Zangwill LM. Effect of signal strength and improper alignment on the variability of stratus optical coherence tomography retinal nerve fiber layer thickness measurements. Am J Ophthalmol 2009;148:249-255.e1. [PMID: 19427621 DOI: 10.1016/j.ajo.2009.03.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 3.8] [Reference Citation Analysis]
15 Kim JS, Ishikawa H, Gabriele ML, Wollstein G, Bilonick RA, Kagemann L, Fujimoto JG, Schuman JS. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest Ophthalmol Vis Sci 2010;51:896-902. [PMID: 19737886 DOI: 10.1167/iovs.09-4110] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
16 Bowd C. Optical coherence tomography for clinical detection and monitoring of glaucoma? Br J Ophthalmol 2007;91:853-4. [PMID: 17576706 DOI: 10.1136/bjo.2006.113100] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
17 Dotan G, Goldstein M, Kesler A, Skarf B. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy. Clin Ophthalmol 2013;7:735-40. [PMID: 23626457 DOI: 10.2147/OPTH.S42522] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
18 Shin JW, Sung KR, Lee J, Kwon J. Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach. Journal of Glaucoma 2017;26:555-60. [DOI: 10.1097/ijg.0000000000000680] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
19 Diniz-Filho A, Abe RY, Zangwill LM, Gracitelli CP, Weinreb RN, Girkin CA, Liebmann JM, Medeiros FA. Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography. Ophthalmology 2016;123:2058-65. [PMID: 27554036 DOI: 10.1016/j.ophtha.2016.07.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
20 Schrems WA, Mardin CY, Horn FK, Juenemann AG, Laemmer R. Comparison of scanning laser polarimetry and optical coherence tomography in quantitative retinal nerve fiber assessment. J Glaucoma 2010;19:83-94. [PMID: 19373100 DOI: 10.1097/IJG.0b013e3181a2fc0e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
21 Niles PI, Greenfield DS, Sehi M, Bhardwaj N, Iverson SM, Chung YS; Advanced Imaging in Glaucoma Study Group. Detection of progressive macular thickness loss using optical coherence tomography in glaucoma suspect and glaucomatous eyes. Eye (Lond) 2012;26:983-91. [PMID: 22576828 DOI: 10.1038/eye.2012.76] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
22 Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma 2009;18:213-6. [PMID: 19295375 DOI: 10.1097/IJG.0b013e31817eee20] [Cited by in Crossref: 79] [Cited by in F6Publishing: 26] [Article Influence: 6.6] [Reference Citation Analysis]
23 Reznicek L, Muth D, Vogel M, Hirneiß C. Structure-Function Relationship between Flicker-Defined Form Perimetry and Spectral-Domain Optical Coherence Tomography in Glaucoma Suspects. Curr Eye Res 2017;42:418-23. [PMID: 27419859 DOI: 10.1080/02713683.2016.1190848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
24 Wu Z, Medeiros FA. A simplified combined index of structure and function for detecting and staging glaucomatous damage. Sci Rep 2021;11:3172. [PMID: 33542367 DOI: 10.1038/s41598-021-82756-6] [Reference Citation Analysis]
25 Rao A, Sahoo B, Kumar M, Varshney G, Kumar R. Retinal nerve fiber layer thickness in children <18 years by spectral-domain optical coherence tomography. Semin Ophthalmol 2013;28:97-102. [PMID: 23448566 DOI: 10.3109/08820538.2012.760626] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
26 Chung E, Demetriades AM, Christos PJ, Radcliffe NM. Structural glaucomatous progression before and after occurrence of an optic disc haemorrhage. Br J Ophthalmol 2015;99:21-5. [PMID: 25057184 DOI: 10.1136/bjophthalmol-2014-305349] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
27 Medeiros FA, Zangwill LM, Mansouri K, Lisboa R, Tafreshi A, Weinreb RN. Incorporating risk factors to improve the assessment of rates of glaucomatous progression. Invest Ophthalmol Vis Sci 2012;53:2199-207. [PMID: 22410555 DOI: 10.1167/iovs.11-8639] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
28 Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci 2012;53:6939-46. [PMID: 22893677 DOI: 10.1167/iovs.12-10345] [Cited by in Crossref: 111] [Cited by in F6Publishing: 95] [Article Influence: 12.3] [Reference Citation Analysis]
29 Ram S, Danford F, Howerton S, Rodriguez JJ, Geest JPV. Three-Dimensional Segmentation of the Ex-Vivo Anterior Lamina Cribrosa From Second-Harmonic Imaging Microscopy. IEEE Trans Biomed Eng 2018;65:1617-29. [PMID: 28252388 DOI: 10.1109/TBME.2017.2674521] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
30 Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Vizzeri G, Sample PA, Susanna R Jr, Medeiros FA. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology 2010;117:462-70. [PMID: 20036010 DOI: 10.1016/j.ophtha.2009.08.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
31 Tanga L, Roberti G, Oddone F, Quaranta L, Ferrazza M, Berardo F, Manni G, Centofanti M. Evaluating the effect of pupil dilation on spectral-domain optical coherence tomography measurements and their quality score. BMC Ophthalmol 2015;15:175. [PMID: 26654127 DOI: 10.1186/s12886-015-0168-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ventura LM, Sorokac N, De Los Santos R, Feuer WJ, Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 2006;47:3904-11. [PMID: 16936103 DOI: 10.1167/iovs.06-0161] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 4.7] [Reference Citation Analysis]
33 Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257-1263, 1263e1-e3. [PMID: 19464061 DOI: 10.1016/j.ophtha.2009.04.013] [Cited by in Crossref: 277] [Cited by in F6Publishing: 242] [Article Influence: 23.1] [Reference Citation Analysis]
34 Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R, Weinreb RN. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741-5748. [PMID: 19815731 DOI: 10.1167/iovs.09-3715] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 9.0] [Reference Citation Analysis]
35 Lee WJ, Park KH, Seong M. Vulnerability Zone of Glaucoma Progression in Combined Wide-field Optical Coherence Tomography Event-based Progression Analysis. Invest Ophthalmol Vis Sci 2020;61:56. [PMID: 32460317 DOI: 10.1167/iovs.61.5.56] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Abe RY, Gracitelli CP, Diniz-Filho A, Tatham AJ, Medeiros FA. Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring. Curr Ophthalmol Rep 2015;3:74-84. [PMID: 26052477 DOI: 10.1007/s40135-015-0067-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
37 Mayer MA, Hornegger J, Mardin CY, Tornow RP. Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients. Biomed Opt Express 2010;1:1358-83. [PMID: 21258556 DOI: 10.1364/BOE.1.001358] [Cited by in Crossref: 93] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
38 Graham KL, McCowan CI, Caruso K, Billson FM, Whittaker CJG, White A. Optical coherence tomography of the retina, nerve fiber layer, and optic nerve head in dogs with glaucoma. Vet Ophthalmol 2020;23:97-112. [PMID: 31297979 DOI: 10.1111/vop.12694] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Cheng CS, Natividad MG, Earnest A, Yong V, Lim BA, Wong HT, Yip LW. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography: Cataract and pupil size effects on RNFL. Clinical & Experimental Ophthalmology 2011;39:215-21. [DOI: 10.1111/j.1442-9071.2010.02460.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
40 Costa RA, Skaf M, Melo LA, Calucci D, Cardillo JA, Castro JC, Huang D, Wojtkowski M. Retinal assessment using optical coherence tomography. Progress in Retinal and Eye Research 2006;25:325-53. [DOI: 10.1016/j.preteyeres.2006.03.001] [Cited by in Crossref: 134] [Cited by in F6Publishing: 109] [Article Influence: 8.9] [Reference Citation Analysis]
41 Pandey AN, Sujata S. Study of long term structural and functional changes in medically controlled glaucoma. Int J Ophthalmol 2014;7:128-32. [PMID: 24634878 DOI: 10.3980/j.issn.2222-3959.2014.01.24] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
42 Na JH, Sung KR, Baek S, Lee JY, Kim S. Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis. Curr Eye Res 2013;38:386-95. [PMID: 23441595 DOI: 10.3109/02713683.2012.742913] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
43 Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N. Scanning Laser Polarimetry With Variable Corneal Compensation and Optical Coherence Tomography in Tilted Disk. American Journal of Ophthalmology 2006;142:475-82. [DOI: 10.1016/j.ajo.2006.04.053] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
44 Gabriele ML, Ishikawa H, Wollstein G, Bilonick RA, Townsend KA, Kagemann L, Wojtkowski M, Srinivasan VJ, Fujimoto JG, Duker JS, Schuman JS. Optical coherence tomography scan circle location and mean retinal nerve fiber layer measurement variability. Invest Ophthalmol Vis Sci 2008;49:2315-21. [PMID: 18515577 DOI: 10.1167/iovs.07-0873] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 3.2] [Reference Citation Analysis]
45 Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007;12:051403. [DOI: 10.1117/1.2793736] [Cited by in Crossref: 337] [Cited by in F6Publishing: 224] [Article Influence: 24.1] [Reference Citation Analysis]
46 Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of Macular Ganglion Cell-Inner Plexiform Layer Defect Generated by Spectral-Domain OCT in Glaucoma Patients and Normal Subjects. J Glaucoma 2015;24:583-90. [PMID: 25719232 DOI: 10.1097/IJG.0000000000000231] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
47 Song Y, Ishikawa H, Wu M, Liu YY, Lucy KA, Lavinsky F, Liu M, Wollstein G, Schuman JS. Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements. Ophthalmology 2018;125:1354-61. [PMID: 29571832 DOI: 10.1016/j.ophtha.2018.02.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
48 Gracitelli CP, Abe RY, Medeiros FA. Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis. Open Ophthalmol J 2015;9:68-77. [PMID: 26069519 DOI: 10.2174/1874364101509010068] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
49 Lee K, Yang H, Kim JY, Seong GJ, Kim CY, Bae HW. Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia. Invest Ophthalmol Vis Sci 2020;61:35. [PMID: 32716503 DOI: 10.1167/iovs.61.8.35] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
50 Abu SL, Marín-Franch I, Racette L. A framework for assessing glaucoma progression using structural and functional indices jointly. PLoS One 2020;15:e0235255. [PMID: 32609734 DOI: 10.1371/journal.pone.0235255] [Reference Citation Analysis]
51 Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF. A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Invest Ophthalmol Vis Sci 2010;51:1464-74. [PMID: 19875649 DOI: 10.1167/iovs.09-3984] [Cited by in Crossref: 75] [Cited by in F6Publishing: 81] [Article Influence: 6.3] [Reference Citation Analysis]
52 Yang Q, Cho KS, Chen H, Yu D, Wang WH, Luo G, Pang IH, Guo W, Chen DF. Microbead-induced ocular hypertensive mouse model for screening and testing of aqueous production suppressants for glaucoma. Invest Ophthalmol Vis Sci 2012;53:3733-41. [PMID: 22599582 DOI: 10.1167/iovs.12-9814] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
53 Giangiacomo A, Garway-Heath D, Caprioli J. Diagnosing glaucoma progression: current practice and promising technologies. Curr Opin Ophthalmol 2006;17:153-62. [PMID: 16552250 DOI: 10.1097/01.icu.0000193089.52561.ac] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
54 Shin JW, Sung KR, Park S. Patterns of Progressive Ganglion Cell–Inner Plexiform Layer Thinning in Glaucoma Detected by OCT. Ophthalmology 2018;125:1515-25. [DOI: 10.1016/j.ophtha.2018.03.052] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
55 Aboobakar IF, Wang J, Chauhan BC, Boland MV, Friedman DS, Ramulu PY, Yohannan J. Factors Predicting a Greater Likelihood of Poor Visual Field Reliability in Glaucoma Patients and Suspects. Transl Vis Sci Technol 2020;9:4. [PMID: 32509439 DOI: 10.1167/tvst.9.1.4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
56 Tenkumo K, Hirooka K, Baba T, Nitta E, Sato S, Shiraga F. Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma. Jpn J Ophthalmol 2013;57:451-6. [PMID: 23797700 DOI: 10.1007/s10384-013-0254-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
57 Ha A, Kim TJ, Lee WJ, Kim DM, Jeoung JW, Kim YK, Park KH. Quantitative analysis of retinal nerve fiber layer defect in early open-angle glaucoma with normal intraocular pressure. Jpn J Ophthalmol 2020;64:278-84. [PMID: 32062849 DOI: 10.1007/s10384-019-00704-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 . Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye. Canadian Journal of Ophthalmology 2009;44:S7-S54. [DOI: 10.3129/i09.080] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
59 Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, Khachatryan N, Hammel N, Liebmann JM, Girkin CA, Sample PA, Zangwill LM. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology 2014;121:1350-8. [PMID: 24629619 DOI: 10.1016/j.ophtha.2014.01.017] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 12.7] [Reference Citation Analysis]
60 Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 2013;120:736-44. [PMID: 23246120 DOI: 10.1016/j.ophtha.2012.09.039] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 6.7] [Reference Citation Analysis]
61 Asrani S, Edghill B, Gupta Y, Meerhoff G. Optical coherence tomography errors in glaucoma. J Glaucoma 2010;19:237-42. [PMID: 19661819 DOI: 10.1097/IJG.0b013e3181b21f99] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
62 Mwanza JC, Kim HY, Budenz DL, Warren JL, Margolis M, Lawrence SD, Jani PD, Thompson GS, Lee RK. Residual and Dynamic Range of Retinal Nerve Fiber Layer Thickness in Glaucoma: Comparison of Three OCT Platforms. Invest Ophthalmol Vis Sci 2015;56:6344-51. [PMID: 26436887 DOI: 10.1167/iovs.15-17248] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 11.2] [Reference Citation Analysis]
63 Brusini P, Zeppieri M, Tosoni C, Parisi L, Felletti M, Salvetat ML. Stratus-OCT imaging in early glaucomatous and in ocular hypertensive patients with and without frequency-doubling technology abnormalities. Eye (Lond) 2008;22:406-13. [PMID: 17304263 DOI: 10.1038/sj.eye.6702654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
64 Shabbir A, Rasheed A, Shehraz H, Saleem A, Zafar B, Sajid M, Ali N, Dar SH, Shehryar T. Detection of glaucoma using retinal fundus images: A comprehensive review. Math Biosci Eng 2021;18:2033-76. [PMID: 33892536 DOI: 10.3934/mbe.2021106] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Leung CK. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol. 2014;25:104-111. [PMID: 24370973 DOI: 10.1097/icu.0000000000000024] [Cited by in Crossref: 78] [Cited by in F6Publishing: 39] [Article Influence: 11.1] [Reference Citation Analysis]
66 Mavrommatis MA, Wu Z, Naegele SI, Nunez J, De Moraes CG, Ritch R, Hood DC. Deep Defects Seen on Visual Fields Spatially Correspond Well to Loss of Retinal Nerve Fiber Layer Seen on Circumpapillary OCT Scans. Invest Ophthalmol Vis Sci 2018;59:621-8. [PMID: 29392306 DOI: 10.1167/iovs.17-23097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Asefzadeh B, Ninyo K. Longitudinal analysis of retinal changes after branch retinal artery occlusion using optical coherence tomography. Optometry 2008;79:85-9. [PMID: 18215797 DOI: 10.1016/j.optm.2007.08.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
68 Zemborain ZZ, Jarukasetphon R, Tsamis E, De Moraes CG, Ritch R, Hood DC. Optical Coherence Tomography Can Be Used to Assess Glaucomatous Optic Nerve Damage in Most Eyes With High Myopia. J Glaucoma 2020;29:833-45. [PMID: 33006872 DOI: 10.1097/IJG.0000000000001631] [Reference Citation Analysis]
69 Gardiner SK, Mansberger SL, Fortune B. Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma. Invest Ophthalmol Vis Sci 2020;61:5. [PMID: 33141891 DOI: 10.1167/iovs.61.13.5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Ackermann P, Brachert M, Albrecht P, Ringelstein M, Finis D, Geerling G, Aktas O, Guthoff R. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography: Retinal alteration OCT detection. Clinical & Experimental Ophthalmology 2017;45:496-508. [DOI: 10.1111/ceo.12914] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
71 Sehi M, Zhang X, Greenfield DS, Chung Y, Wollstein G, Francis BA, Schuman JS, Varma R, Huang D; Advanced Imaging for Glaucoma Study Group. Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthalmol 2013;155:73-82.e1. [PMID: 23036570 DOI: 10.1016/j.ajo.2012.07.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
72 Sehi M, Greenfield DS. Assessment of retinal nerve fiber layer using optical coherence tomography and scanning laser polarimetry in progressive glaucomatous optic neuropathy. Am J Ophthalmol 2006;142:1056-9. [PMID: 17157591 DOI: 10.1016/j.ajo.2006.07.043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
73 Blanco R, Martinez-Navarrete G, Pérez-Rico C, Valiente-Soriano FJ, Avilés-Trigueros M, Vicente J, Fernandez E, Vidal-Sanz M, de la Villa P. A Chronic Ocular-Hypertensive Rat Model induced by Injection of the Sclerosant Agent Polidocanol in the Aqueous Humor Outflow Pathway. Int J Mol Sci 2019;20:E3209. [PMID: 31261943 DOI: 10.3390/ijms20133209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Choe TE, Abbott CJ, Piper C, Wang L, Fortune B. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. PLoS One 2014;9:e113011. [PMID: 25393294 DOI: 10.1371/journal.pone.0113011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
75 Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012;119:1858-66. [PMID: 22677426 DOI: 10.1016/j.ophtha.2012.03.044] [Cited by in Crossref: 116] [Cited by in F6Publishing: 92] [Article Influence: 12.9] [Reference Citation Analysis]
76 Yu M, Lin C, Weinreb RN, Lai G, Chiu V, Leung CK. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning. Ophthalmology 2016;123:1201-10. [DOI: 10.1016/j.ophtha.2016.02.017] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 13.6] [Reference Citation Analysis]
77 Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects. Ophthalmology 2015;122:2002-9. [PMID: 26198809 DOI: 10.1016/j.ophtha.2015.06.015] [Cited by in Crossref: 81] [Cited by in F6Publishing: 50] [Article Influence: 13.5] [Reference Citation Analysis]
78 Wheat JL, Rangaswamy NV, Harwerth RS. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma 2012;21:95-101. [PMID: 21336150 DOI: 10.1097/IJG.0b013e31820bcfbe] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 0.2] [Reference Citation Analysis]
79 Aref AA, Budenz DL. Spectral Domain Optical Coherence Tomography in the Diagnosis and Management of Glaucoma. Ophthalmic Surg Lasers Imaging 2010;41. [DOI: 10.3928/15428877-20101031-01] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
80 Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 2014;98 Suppl 2:ii15-9. [PMID: 24357497 DOI: 10.1136/bjophthalmol-2013-304326] [Cited by in Crossref: 183] [Cited by in F6Publishing: 132] [Article Influence: 22.9] [Reference Citation Analysis]
81 Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Comparison of Optic Nerve Head Topography and Visual Field in Eyes with Open-angle and Angle-closure Glaucoma. Ophthalmology 2008;115:239-245.e2. [DOI: 10.1016/j.ophtha.2007.03.086] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
82 Gupta L, Rahmatnejad K, Gogte P, Siraj S, Fudemberg SJ, Mantravadi AV, Katz LJ, Waisbourd M. Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients. Canadian Journal of Ophthalmology 2019;54:335-41. [DOI: 10.1016/j.jcjo.2018.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
83 O'Leary N, Artes PH, Hutchison DM, Nicolela MT, Chauhan BC. Rates of retinal nerve fibre layer thickness change in glaucoma patients and control subjects. Eye (Lond) 2012;26:1554-62. [PMID: 23079756 DOI: 10.1038/eye.2012.202] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
84 Nguyen AT, Greenfield DS, Bhakta AS, Lee J, Feuer WJ. Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes. Ophthalmol Glaucoma 2019;2:36-46. [PMID: 32672556 DOI: 10.1016/j.ogla.2018.11.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
85 Abu SL, Marín-Franch I, Racette L. Detecting Progression in Patients With Different Clinical Presentations of Primary Open-angle Glaucoma. J Glaucoma 2021;30:769-75. [PMID: 33867504 DOI: 10.1097/IJG.0000000000001843] [Reference Citation Analysis]
86 Manassakorn A, Aupapong S. Retinal nerve fiber layer defect patterns in primary angle-closure and open-angle glaucoma: a comparison using optical coherence tomography. Jpn J Ophthalmol 2011;55:28-34. [PMID: 21331689 DOI: 10.1007/s10384-010-0898-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
87 Yalvac IS, Altunsoy M, Cansever S, Satana B, Eksioglu U, Duman S. The correlation between visual field defects and focal nerve fiber layer thickness measured with optical coherence tomography in the evaluation of glaucoma. J Glaucoma 2009;18:53-61. [PMID: 19142136 DOI: 10.1097/IJG.0b013e318179f751] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
88 Hagman J. Comparison of Resource Utilization in the Treatment of Open-Angle Glaucoma between Two Cities in Finland: Is More Better? Acta Ophthalmologica 2013;91:1-47. [DOI: 10.1111/aos.12141] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
89 Lee WJ, Kim TJ, Kim YK, Jeoung JW, Park KH. Serial Combined Wide-Field Optical Coherence Tomography Maps for Detection of Early Glaucomatous Structural Progression. JAMA Ophthalmol 2018;136:1121-7. [PMID: 30054615 DOI: 10.1001/jamaophthalmol.2018.3160] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
90 Sharma P, Sample PA, Zangwill LM, Schuman JS. Diagnostic tools for glaucoma detection and management. Surv Ophthalmol 2008;53 Suppl1:S17-32. [PMID: 19038620 DOI: 10.1016/j.survophthal.2008.08.003] [Cited by in Crossref: 84] [Cited by in F6Publishing: 62] [Article Influence: 7.0] [Reference Citation Analysis]
91 Lee JR, Sung KR, Na JH, Shon K, Lee KS. Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression. Jpn J Ophthalmol 2013;57:546-52. [DOI: 10.1007/s10384-013-0276-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
92 Karaca U, Dagli O, Ozge G, Mumcuoglu T, Bayer A. Comparison of structural and functional tests in primary open angle glaucoma. Indian J Ophthalmol 2020;68:805-11. [PMID: 32317450 DOI: 10.4103/ijo.IJO_921_19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
93 Lee SY, Bae HW, Seong GJ, Kim CY. Diagnostic Ability of Swept-Source and Spectral-Domain Optical Coherence Tomography for Glaucoma. Yonsei Med J 2018;59:887-96. [PMID: 30091323 DOI: 10.3349/ymj.2018.59.7.887] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
94 Seth NG, Kaushik S, Kaur S, Raj S, Pandav SS. 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools. Br J Ophthalmol 2018;102:802-7. [DOI: 10.1136/bjophthalmol-2017-310731] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
95 Lee J, Sung KR, Kwon J, Shin JW. Effect of Antiplatelet/Anticoagulant Use on Glaucoma Progression in Eyes With Optic Disc Hemorrhage. J Glaucoma 2018;27:1125-30. [PMID: 30199463 DOI: 10.1097/IJG.0000000000001065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
96 Huang XR, Knighton RW. Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma. Exp Eye Res 2009;88:1107-14. [PMID: 19450448 DOI: 10.1016/j.exer.2009.01.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
97 He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:574-86. [PMID: 24255047 DOI: 10.1167/iovs.13-13245] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
98 Gordon-bennett PSC, Ioannidis AS, Papageorgiou K, Andreou PS. A survey of investigations used for the management of glaucoma in hospital service in the United Kingdom. Eye 2008;22:1410-8. [DOI: 10.1038/sj.eye.6703089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
99 Kotowski J, Wollstein G, Ishikawa H, Schuman JS. Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 2014;59:458-67. [PMID: 24388709 DOI: 10.1016/j.survophthal.2013.04.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
100 Harwerth RS, Wheat JL. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch Clin Exp Ophthalmol 2008;246:305-14. [PMID: 17934750 DOI: 10.1007/s00417-007-0691-5] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 2.5] [Reference Citation Analysis]
101 Barua N, Sitaraman C, Goel S, Chakraborti C, Mukherjee S, Parashar H. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population. Indian J Ophthalmol 2016;64:296-302. [PMID: 27221682 DOI: 10.4103/0301-4738.182941] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
102 Lee KS, Sung KR, Kang SY, Cho JW, Kim DY, Kook MS. Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol 2011;55:213-9. [DOI: 10.1007/s10384-011-0009-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
103 Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, Schuman JS, Huang D; Advanced Imaging for Glaucoma Study Group. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am J Ophthalmol 2017;184:63-74. [PMID: 28964806 DOI: 10.1016/j.ajo.2017.09.020] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 14.8] [Reference Citation Analysis]
104 Nadler Z, Wollstein G, Ishikawa H, Schuman JS. Clinical application of ocular imaging. Optom Vis Sci 2012;89:E543-53. [PMID: 22488266 DOI: 10.1097/OPX.0b013e31824f164d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
105 Convento E, Midena E, Dorigo MT, Maritan V, Cavarzeran F, Fregona IA. Peripapillary fundus perimetry in eyes with glaucoma. Br J Ophthalmol 2006;90:1398-403. [PMID: 16809380 DOI: 10.1136/bjo.2006.092973] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
106 Lin SC, Singh K, Jampel HD, Hodapp EA, Smith SD, Francis BA, Dueker DK, Fechtner RD, Samples JS, Schuman JS, Minckler DS; American Academy of Ophthalmology., Ophthalmic Technology Assessment Committee Glaucoma Panel. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007;114:1937-49. [PMID: 17908595 DOI: 10.1016/j.ophtha.2007.07.005] [Cited by in Crossref: 90] [Cited by in F6Publishing: 60] [Article Influence: 6.4] [Reference Citation Analysis]
107 Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, Karray S, Giani A, John SW, Chen DF, Marshak-Rothstein A, Ksander BR. Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 2011;6:e17659. [PMID: 21479271 DOI: 10.1371/journal.pone.0017659] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 4.8] [Reference Citation Analysis]
108 Dhar SK, Raji K, Sandeep S, Abhijit. Study of correlation between stereopsis and retinal nerve fiber layer thickness in cases of glaucoma. Med J Armed Forces India 2021;77:63-9. [PMID: 33487868 DOI: 10.1016/j.mjafi.2020.01.004] [Reference Citation Analysis]
109 Salchow DJ, Oleynikov YS, Chiang MF, Kennedy-salchow SE, Langton K, Tsai JC, Al-aswad LA. Retinal Nerve Fiber Layer Thickness in Normal Children Measured with Optical Coherence Tomography. Ophthalmology 2006;113:786-91. [DOI: 10.1016/j.ophtha.2006.01.036] [Cited by in Crossref: 96] [Cited by in F6Publishing: 67] [Article Influence: 6.4] [Reference Citation Analysis]
110 Vazirani J, Kaushik S, Pandav SS, Gupta P. Reproducibility of retinal nerve fiber layer measurements across the glaucoma spectrum using optical coherence tomography. Indian J Ophthalmol 2015;63:300-5. [PMID: 26044467 DOI: 10.4103/0301-4738.158064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
111 Hong JT, Sung KR, Cho JW, Yun SC, Kang SY, Kook MS. Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J Ophthalmol 2012;26:32-8. [PMID: 22323883 DOI: 10.3341/kjo.2012.26.1.32] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
112 Strouthidis NG, Demirel S, Asaoka R, Cossio-Zuniga C, Garway-Heath DF. The Heidelberg retina tomograph Glaucoma Probability Score: reproducibility and measurement of progression. Ophthalmology 2010;117:724-9. [PMID: 20045564 DOI: 10.1016/j.ophtha.2009.09.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
113 Prakalapakorn SG, Freedman SF, Lokhnygina Y, Gandhi NG, Holgado S, Chen BB, El-Dairi MA. Longitudinal reproducibility of optical coherence tomography measurements in children. J AAPOS 2012;16:523-8. [PMID: 23237748 DOI: 10.1016/j.jaapos.2012.08.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
114 Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Kagemann L, Sigal IA, Ferguson RD, Hammer DX, Grulkowski I, Liu JJ, Kraus MF, Lu CD, Hornegger J, Fujimoto JG, Schuman JS. Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express 2013;4:2596-608. [PMID: 24298418 DOI: 10.1364/BOE.4.002596] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
115 Mansouri K, Leite MT, Medeiros FA, Leung CK, Weinreb RN. Assessment of rates of structural change in glaucoma using imaging technologies. Eye (Lond) 2011;25:269-77. [PMID: 21212798 DOI: 10.1038/eye.2010.202] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
116 Na JH, Sung KR, Lee JR, Lee KS, Baek S, Kim HK, Sohn YH. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1388-1395. [PMID: 23474248 DOI: 10.1016/j.ophtha.2012.12.014] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
117 Dong ZM, Wollstein G, Wang B, Schuman JS. Adaptive optics optical coherence tomography in glaucoma. Prog Retin Eye Res 2017;57:76-88. [PMID: 27916682 DOI: 10.1016/j.preteyeres.2016.11.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
118 Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS. A Comparison of Structural Measurements Using 2 Stratus Optical Coherence Tomography Instruments: . Journal of Glaucoma 2007;16:287-92. [DOI: 10.1097/ijg.0b013e3180391a72] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
119 Leung CKS, Liu S, Weinreb RN, Lai G, Ye C, Cheung CYL, Pang CP, Tse KK, Lam DSC. Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma. Ophthalmology 2011;118:1551-7. [DOI: 10.1016/j.ophtha.2010.12.035] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 7.8] [Reference Citation Analysis]
120 Lisboa R, Weinreb RN, Medeiros FA. Combining structure and function to evaluate glaucomatous progression: implications for the design of clinical trials. Curr Opin Pharmacol 2013;13:115-22. [PMID: 23219155 DOI: 10.1016/j.coph.2012.10.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
121 Repka MX, Goldenberg-cohen N, Edwards AR. Retinal Nerve Fiber Layer Thickness in Amblyopic Eyes. American Journal of Ophthalmology 2006;142:247-251.e2. [DOI: 10.1016/j.ajo.2006.02.030] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
122 Garway-Heath DF, Zhu H, Cheng Q, Morgan K, Frost C, Crabb DP, Ho TA, Agiomyrgiannakis Y. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study. Health Technol Assess 2018;22:1-106. [PMID: 29384083 DOI: 10.3310/hta22040] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
123 Hirooka K, Izumibata S, Ukegawa K, Nitta E, Tsujikawa A. Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study. Medicine (Baltimore) 2016;95:e4209. [PMID: 27472691 DOI: 10.1097/MD.0000000000004209] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
124 Sarfraz MH, Mehboob MA, Haq RI. Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients. Pak J Med Sci 2017;33:132-6. [PMID: 28367186 DOI: 10.12669/pjms.331.11623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
125 Rolle T, Briamonte C, Curto D, Grignolo FM. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin Ophthalmol 2011;5:961-9. [PMID: 21792286 DOI: 10.2147/OPTH.S20249] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
126 Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fibre layer for glaucoma. Br J Ophthalmol 2009;93:139-43. [PMID: 19028735 DOI: 10.1136/bjo.2008.145540] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
127 Brusini P. Monitoring glaucoma progression. Prog Brain Res 2008;173:59-73. [PMID: 18929102 DOI: 10.1016/S0079-6123(08)01106-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
128 Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009;93:1057-63. [PMID: 19429591 DOI: 10.1136/bjo.2009.157875] [Cited by in Crossref: 83] [Cited by in F6Publishing: 76] [Article Influence: 6.9] [Reference Citation Analysis]
129 Rebolleda G, Muñoz-negrete FJ, Noval S. Evaluation of Changes in Peripapillary Nerve Fiber Layer Thickness after Deep Sclerectomy with Optical Coherence Tomography. Ophthalmology 2007;114:488-93. [DOI: 10.1016/j.ophtha.2006.06.051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
130 Lee WJ, Na KI, Ha A, Kim YK, Jeoung JW, Park KH. Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis. Am J Ophthalmol 2018;196:65-71. [PMID: 30099036 DOI: 10.1016/j.ajo.2018.08.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
131 Kromer R, Spitzer MS. Bruch's Membrane Opening Minimum Rim Width Measurement with SD-OCT: A Method to Correct for the Opening Size of Bruch's Membrane. J Ophthalmol 2017;2017:8963267. [PMID: 29119022 DOI: 10.1155/2017/8963267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
132 Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J. Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma 2008;17:183-8. [PMID: 18414102 DOI: 10.1097/IJG.0b013e31815768c4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
133 Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009;148:597-605. [PMID: 19589493 DOI: 10.1016/j.ajo.2009.05.030] [Cited by in Crossref: 62] [Cited by in F6Publishing: 53] [Article Influence: 5.2] [Reference Citation Analysis]
134 Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011;52:1206-19. [PMID: 21217108 DOI: 10.1167/iovs.10-5599] [Cited by in Crossref: 110] [Cited by in F6Publishing: 112] [Article Influence: 11.0] [Reference Citation Analysis]
135 Kok PH, van den Berg TJ, van Dijk HW, Stehouwer M, van der Meulen IJ, Mourits MP, Verbraak FD. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol 2013;91:418-24. [PMID: 23106951 DOI: 10.1111/j.1755-3768.2012.02514.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
136 Lavinsky F, Wu M, Schuman JS, Lucy KA, Liu M, Song Y, Fallon J, de Los Angeles Ramos Cadena M, Ishikawa H, Wollstein G. Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage? Ophthalmology 2018;125:1907-12. [PMID: 29934267 DOI: 10.1016/j.ophtha.2018.05.020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
137 Medeiros FA, Zangwill LM, Girkin CA, Liebmann JM, Weinreb RN. Combining structural and functional measurements to improve estimates of rates of glaucomatous progression. Am J Ophthalmol 2012;153:1197-205.e1. [PMID: 22317914 DOI: 10.1016/j.ajo.2011.11.015] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.1] [Reference Citation Analysis]
138 Na JH, Sung KR, Baek SH, Kim ST, Shon K, Jung JJ. Rates and Patterns of Macular and Circumpapillary Retinal Nerve Fiber Layer Thinning in Preperimetric and Perimetric Glaucomatous Eyes: . Journal of Glaucoma 2015;24:278-85. [DOI: 10.1097/ijg.0000000000000046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
139 Medeiros FA, Lisboa R, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol 2012;130:1107-16. [PMID: 23130365 DOI: 10.1001/archophthalmol.2012.827] [Cited by in Crossref: 76] [Cited by in F6Publishing: 51] [Article Influence: 8.4] [Reference Citation Analysis]
140 Field MG, Alasil T, Baniasadi N, Que C, Simavli H, Sobeih D, Sola-Del Valle D, Best MJ, Chen TC. Facilitating Glaucoma Diagnosis With Intereye Retinal Nerve Fiber Layer Asymmetry Using Spectral-Domain Optical Coherence Tomography. J Glaucoma 2016;25:167-76. [PMID: 24921896 DOI: 10.1097/IJG.0000000000000080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
141 Smith M, Frost A, Graham CM, Shaw S. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. Br J Ophthalmol 2007;91:1686-90. [PMID: 17556429 DOI: 10.1136/bjo.2006.113134] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
142 Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, Aliberti S, Balestrazzi E, Colotto A. Structure–function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 2008;246:1153-62. [DOI: 10.1007/s00417-008-0808-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.0] [Reference Citation Analysis]
143 Folio LS, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Kagemann L, Noecker RJ, Fujimoto JG, Schuman JS. Variation in optical coherence tomography signal quality as an indicator of retinal nerve fibre layer segmentation error. Br J Ophthalmol 2012;96:514-8. [PMID: 21900227 DOI: 10.1136/bjophthalmol-2011-300044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
144 Pawar N, Maheshwari D, Ravindran M, Ramakrishnan R. Retinal nerve fiber layer thickness in normal Indian pediatric population measured with optical coherence tomography. Indian J Ophthalmol 2014;62:412-8. [PMID: 24817744 DOI: 10.4103/0301-4738.121185] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
145 Wu Z, Vazeen M, Varma R, Chopra V, Walsh AC, LaBree LD, Sadda SR. Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology 2007;114:1505-12. [PMID: 17367862 DOI: 10.1016/j.ophtha.2006.10.061] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 5.5] [Reference Citation Analysis]
146 Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015;141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
147 Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C, Noecker RJ, Ishikawa H, Schuman JS. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005;46:4147-52. [PMID: 16249492 DOI: 10.1167/iovs.05-0366] [Cited by in Crossref: 100] [Cited by in F6Publishing: 83] [Article Influence: 6.3] [Reference Citation Analysis]
148 Lucy KA, Wollstein G. Structural and Functional Evaluations for the Early Detection of Glaucoma. Expert Rev Ophthalmol 2016;11:367-76. [PMID: 28603546 DOI: 10.1080/17469899.2016.1229599] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
149 Brazerol J, Iliev ME, Höhn R, Fränkl S, Grabe H, Abegg M. Retrograde Maculopathy in Patients With Glaucoma. J Glaucoma 2017;26:423-9. [PMID: 28169924 DOI: 10.1097/IJG.0000000000000633] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
150 El-dairi M, Holgado S, Asrani S, Freedman SF. Optical coherence tomography (OCT) measurements in black and white children with large cup-to-disc ratios. Experimental Eye Research 2011;93:299-307. [DOI: 10.1016/j.exer.2011.05.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
151 Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol 2015;159:193-201. [PMID: 25448991 DOI: 10.1016/j.ajo.2014.10.019] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
152 Banegas SA, Antón A, Morilla A, Bogado M, Ayala EM, Fernandez-Guardiola A, Moreno-Montañes J. Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma. J Glaucoma 2016;25:e229-35. [PMID: 26020689 DOI: 10.1097/IJG.0000000000000280] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
153 Miraftabi A, Amini N, Gornbein J, Henry S, Romero P, Coleman AL, Caprioli J, Nouri-Mahdavi K. Local Variability of Macular Thickness Measurements With SD-OCT and Influencing Factors. Transl Vis Sci Technol 2016;5:5. [PMID: 27486555 DOI: 10.1167/tvst.5.4.5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
154 Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, Cheung CY, Lai G, Lam DS. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558-1562. [PMID: 21529954 DOI: 10.1016/j.ophtha.2011.01.026] [Cited by in Crossref: 76] [Cited by in F6Publishing: 62] [Article Influence: 7.6] [Reference Citation Analysis]
155 Medeiros FA, Zangwill LM, Anderson DR, Liebmann JM, Girkin CA, Harwerth RS, Fredette MJ, Weinreb RN. Estimating the rate of retinal ganglion cell loss in glaucoma. Am J Ophthalmol 2012;154:814-824.e1. [PMID: 22840484 DOI: 10.1016/j.ajo.2012.04.022] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 7.3] [Reference Citation Analysis]
156 Chin YC, Perera SA, Tun TA, Teh GH, Cheung CY, Aung T, Wong TY, Baskaran M. Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages. J Glaucoma 2016;25:e76-81. [PMID: 25943726 DOI: 10.1097/IJG.0000000000000262] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
157 Avery RA, Cnaan A, Schuman JS, Trimboli-Heidler C, Chen CL, Packer RJ, Ishikawa H. Longitudinal Change of Circumpapillary Retinal Nerve Fiber Layer Thickness in Children With Optic Pathway Gliomas. Am J Ophthalmol 2015;160:944-952.e1. [PMID: 26231306 DOI: 10.1016/j.ajo.2015.07.036] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
158 Weinreb RN, Kaufman PL. Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function. Invest Ophthalmol Vis Sci 2011;52:7842-51. [PMID: 21972262 DOI: 10.1167/iovs.11-7895] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
159 Lee WJ, Kim YK, Park KH, Jeoung JW. Trend-based Analysis of Ganglion Cell–Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression. Ophthalmology 2017;124:1383-91. [DOI: 10.1016/j.ophtha.2017.03.013] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 10.5] [Reference Citation Analysis]
160 Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res 2010;29:249-71. [PMID: 20226873 DOI: 10.1016/j.preteyeres.2010.02.001] [Cited by in Crossref: 140] [Cited by in F6Publishing: 136] [Article Influence: 12.7] [Reference Citation Analysis]
161 Gabriele ML, Wollstein G, Ishikawa H, Xu J, Kim J, Kagemann L, Folio LS, Schuman JS. Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res 2010;29:556-79. [PMID: 20542136 DOI: 10.1016/j.preteyeres.2010.05.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
162 Prakasam RK, Röhlig M, Fischer D, Götze A, Jünemann A, Schumann H, Stachs O. Deviation Maps for Understanding Thickness Changes of Inner Retinal Layers in Children with Type 1 Diabetes Mellitus. Current Eye Research 2019;44:746-52. [DOI: 10.1080/02713683.2019.1591463] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
163 Medeiros FA, Leite MT, Zangwill LM, Weinreb RN. Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. Invest Ophthalmol Vis Sci 2011;52:5794-803. [PMID: 21693614 DOI: 10.1167/iovs.10-7111] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 6.0] [Reference Citation Analysis]
164 Lee K, Kim BY, Seong GJ, Kim CY, Bae HW, Lee SY. Risk Factors for the Structural Progression of Myopic Glaucomatous Eyes with a History of Laser Refractive Surgery. J Clin Med 2021;10:2408. [PMID: 34072378 DOI: 10.3390/jcm10112408] [Reference Citation Analysis]
165 Grewal DS, Sehi M, Paauw JD, Greenfield DS; Advanced Imaging in Glaucoma Study Group. Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. J Glaucoma 2012;21:214-20. [PMID: 21654510 DOI: 10.1097/IJG.0b013e3182071cc7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
166 Kim YK, Ha A, Lee WJ, Jeoung JW, Park KH. Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT: . Journal of Glaucoma 2017;26:1072-80. [DOI: 10.1097/ijg.0000000000000781] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
167 Beykin G, Norcia AM, Srinivasan VJ, Dubra A, Goldberg JL. Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 2021;80:100875. [PMID: 32659431 DOI: 10.1016/j.preteyeres.2020.100875] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
168 Greenfield DS, Weinreb RN. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol 2008;145:598-603. [PMID: 18295183 DOI: 10.1016/j.ajo.2007.12.018] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 4.4] [Reference Citation Analysis]
169 Strouthidis NG, Chandrasekharan G, Diamond JP, Murdoch IE. Teleglaucoma: ready to go? Br J Ophthalmol 2014;98:1605-11. [PMID: 24723617 DOI: 10.1136/bjophthalmol-2013-304133] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
170 Gedde SJ, Lind JT, Wright MM, Chen PP, Muir KW, Vinod K, Li T, Mansberger SL. Primary Open-Angle Glaucoma Suspect Preferred Practice Pattern®. Ophthalmology 2021;128:P151-92. [DOI: 10.1016/j.ophtha.2020.10.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
171 Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010;117:1692-9, 1699.e1. [PMID: 20493529 DOI: 10.1016/j.ophtha.2010.01.031] [Cited by in Crossref: 109] [Cited by in F6Publishing: 100] [Article Influence: 9.9] [Reference Citation Analysis]
172 Ji MJ, Park JH, Yoo C, Kim YY. Comparison of the Progression of Localized Retinal Nerve Fiber Layer Defects in Red-free Fundus Photograph, En Face Structural Image, and OCT Angiography Image. J Glaucoma 2020;29:698-703. [PMID: 32398586 DOI: 10.1097/IJG.0000000000001528] [Reference Citation Analysis]
173 Abe RY, Diniz-Filho A, Zangwill LM, Gracitelli CP, Marvasti AH, Weinreb RN, Baig S, Medeiros FA. The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT421-8. [PMID: 27409501 DOI: 10.1167/iovs.15-18940] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 8.8] [Reference Citation Analysis]
174 Roh KH, Jeoung JW, Park KH, Yoo BW, Kim DM. Long-Term Reproducibility of Cirrus HD Optical Coherence Tomography Deviation Map in Clinically Stable Glaucomatous Eyes. Ophthalmology 2013;120:969-77. [DOI: 10.1016/j.ophtha.2012.11.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
175 Huang XR, Knighton RW, Feuer WJ, Qiao J. Retinal nerve fiber layer reflectometry must consider directional reflectance. Biomed Opt Express 2016;7:22-33. [PMID: 26819814 DOI: 10.1364/BOE.7.000022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
176 Lee WJ, Shin YU, Lim HW, Cho H, Park KH, Seong M. Clinical Use of PanoMap for Glaucoma: Frequently Damaged Areas in Early Glaucoma. J Glaucoma 2021;30:10-6. [PMID: 33351548 DOI: 10.1097/IJG.0000000000001690] [Reference Citation Analysis]
177 Abe RY, Gracitelli CP, Medeiros FA. The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression. Open Ophthalmol J 2015;9:78-88. [PMID: 26069520 DOI: 10.2174/1874364101509010078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
178 Dwelle J, Liu S, Wang B, McElroy A, Ho D, Markey MK, Milner T, Rylander HG 3rd. Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates. Invest Ophthalmol Vis Sci 2012;53:4380-95. [PMID: 22570345 DOI: 10.1167/iovs.11-9130] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
179 Mwanza JC, Oakley JD, Budenz DL, Anderson DR; Cirrus Optical Coherence Tomography Normative Database Study Group. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011;118:241-8.e1. [PMID: 20920824 DOI: 10.1016/j.ophtha.2010.06.036] [Cited by in Crossref: 180] [Cited by in F6Publishing: 145] [Article Influence: 16.4] [Reference Citation Analysis]
180 Adam M, Okka M, Yosunkaya S, Bozkurt B, Kerimoğlu H, Turan M. The evaluation of retinal nerve fiber layer thickness in patients with obstructive sleep apnea syndrome. J Ophthalmol 2013;2013:292158. [PMID: 24369492 DOI: 10.1155/2013/292158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
181 Tatham AJ, Medeiros FA. Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. Ophthalmology 2017;124:S57-65. [PMID: 29157363 DOI: 10.1016/j.ophtha.2017.07.015] [Cited by in Crossref: 63] [Cited by in F6Publishing: 41] [Article Influence: 15.8] [Reference Citation Analysis]
182 Dong ZM, Wollstein G, Schuman JS. Clinical Utility of Optical Coherence Tomography in Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT556-67. [PMID: 27537415 DOI: 10.1167/iovs.16-19933] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
183 Hammel N, Belghith A, Bowd C, Medeiros FA, Sharpsten L, Mendoza N, Tatham AJ, Khachatryan N, Liebmann JM, Girkin CA, Weinreb RN, Zangwill LM. Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes. Ophthalmology 2016;123:760-70. [PMID: 26746597 DOI: 10.1016/j.ophtha.2015.11.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
184 Fortune B, Yang H, Strouthidis NG, Cull GA, Grimm JL, Downs JC, Burgoyne CF. The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci 2009;50:4719-26. [PMID: 19420342 DOI: 10.1167/iovs.08-3289] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 2.8] [Reference Citation Analysis]
185 Gabriele ML, Ishikawa H, Schuman JS, Bilonick RA, Kim J, Kagemann L, Wollstein G. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci 2010;51:6519-23. [PMID: 20574022 DOI: 10.1167/iovs.10-5662] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
186 Kotowski J, Wollstein G, Folio LS, Ishikawa H, Schuman JS. Clinical use of OCT in assessing glaucoma progression. Ophthalmic Surg Lasers Imaging 2011;42 Suppl:S6-S14. [PMID: 21790113 DOI: 10.3928/15428877-20110627-01] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
187 Kaushik S, Mulkutkar S, Pandav SS, Verma N, Gupta A. Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography. Int Ophthalmol 2015;35:95-106. [DOI: 10.1007/s10792-014-0028-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
188 Meshi A. Systematic review of macular ganglion cell complex analysis using spectral domain optical coherence tomography for glaucoma assessment. WJO 2015;5:86. [DOI: 10.5318/wjo.v5.i2.86] [Cited by in CrossRef: 3] [Article Influence: 0.5] [Reference Citation Analysis]
189 Nduaguba C, Lee RK. Glaucoma screening: current trends, economic issues, technology, and challenges. Current Opinion in Ophthalmology 2006;17:142-52. [DOI: 10.1097/01.icu.0000193088.75432.c9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]