BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao F, Hoechst B, Gamrekelashvili J, Ormandy LA, Voigtländer T, Wedemeyer H, Ylaya K, Wang XW, Hewitt SM, Manns MP, Korangy F, Greten TF. Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell responses. J Immunol 2012;188:6055-62. [PMID: 22615204 DOI: 10.4049/jimmunol.1102918] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Greten TF, Wang XW, Korangy F. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut 2015;64:842-8. [PMID: 25666193 DOI: 10.1136/gutjnl-2014-307990] [Cited by in Crossref: 110] [Cited by in F6Publishing: 113] [Article Influence: 15.7] [Reference Citation Analysis]
2 Saini C, Ramesh V, Nath I. CD4+ Th17 cells discriminate clinical types and constitute a third subset of non Th1, Non Th2 T cells in human leprosy. PLoS Negl Trop Dis 2013;7:e2338. [PMID: 23936569 DOI: 10.1371/journal.pntd.0002338] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
3 Sung CY, Lee NP, El-Nezami H. Regulation of T helper 17 by bacteria: an approach for the treatment of hepatocellular carcinoma. Int J Hepatol 2012;2012:439024. [PMID: 23316374 DOI: 10.1155/2012/439024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
4 Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, Jeannin P. IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1α. Eur J Immunol 2015;45:1092-102. [PMID: 25545357 DOI: 10.1002/eji.201444606] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
5 Anderson J, Do LAH, Toh ZQ, Hoe E, Reitsma A, Mulholland K, Licciardi PV. Vitamin D Induces Differential Effects on Inflammatory Responses During Bacterial and/or Viral Stimulation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2020;11:602. [PMID: 32318074 DOI: 10.3389/fimmu.2020.00602] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
6 Llosa NJ, Geis AL, Thiele Orberg E, Housseau F. Interleukin-17 and type 17 helper T cells in cancer management and research. Immunotargets Ther 2014;3:39-54. [PMID: 27471699 DOI: 10.2147/ITT.S56529] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 0.4] [Reference Citation Analysis]
7 Golebski K, Ros XR, Nagasawa M, van Tol S, Heesters BA, Aglmous H, Kradolfer CMA, Shikhagaie MM, Seys S, Hellings PW, van Drunen CM, Fokkens WJ, Spits H, Bal SM. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat Commun 2019;10:2162. [PMID: 31089134 DOI: 10.1038/s41467-019-09883-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
8 Kourelis TV, Villasboas JC, Jessen E, Dasari S, Dispenzieri A, Jevremovic D, Kumar S. Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 2019;9:72. [PMID: 31462637 DOI: 10.1038/s41408-019-0234-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
9 Paladugu M, Thakur A, Lum LG, Mittal S, Parajuli P. Generation and immunologic functions of Th17 cells in malignant gliomas. Cancer Immunol Immunother 2013;62:75-86. [PMID: 22752645 DOI: 10.1007/s00262-012-1312-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
10 Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019;56:139-60. [PMID: 27561663 DOI: 10.1007/s12016-016-8578-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
11 Cordero OJ, Rafael-Vidal C, Varela-Calviño R, Calviño-Sampedro C, Malvar-Fernández B, García S, Viñuela JE, Pego-Reigosa JM. Distinctive CD26 Expression on CD4 T-Cell Subsets. Biomolecules 2021;11:1446. [PMID: 34680079 DOI: 10.3390/biom11101446] [Reference Citation Analysis]
12 Ma C, Zhang Q, Greten TF. Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. FEBS J 2018;285:752-62. [DOI: 10.1111/febs.14209] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
13 Jiang Y, Wang L, Peng Y, Qin J, Tan A, Wang S. Interleukin 17 receptor E identifies heterogeneous T helper 17 cells in peritoneal fluid of moderate and severe endometriosis patients. Clin Exp Immunol 2022;207:360-9. [PMID: 35553626 DOI: 10.1093/cei/uxac004] [Reference Citation Analysis]
14 Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015;6:236. [PMID: 26236331 DOI: 10.3389/fgene.2015.00236] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
15 Miah AH, Abas H, Begg M, Marsh BJ, O’flynn DE, Ford AJ, Percy JM, Procopiou PA, Richards SA, Rumley S. Lead identification of benzimidazolone and azabenzimidazolone arylsulfonamides as CC-chemokine receptor 4 (CCR4) antagonists. Bioorganic & Medicinal Chemistry 2014;22:4298-311. [DOI: 10.1016/j.bmc.2014.05.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020;39:3620-37. [PMID: 32157213 DOI: 10.1038/s41388-020-1249-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 23.5] [Reference Citation Analysis]
17 Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017;9:a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Cited by in Crossref: 174] [Cited by in F6Publishing: 161] [Article Influence: 34.8] [Reference Citation Analysis]
18 Zhao F, Korangy F, Greten TF. Cellular immune suppressor mechanisms in patients with hepatocellular carcinoma. Dig Dis. 2012;30:477-482. [PMID: 23108303 DOI: 10.1159/000341695] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
19 Walch-Rückheim B, Mavrova R, Henning M, Vicinus B, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF, Smola S. Stromal Fibroblasts Induce CCL20 through IL6/C/EBPβ to Support the Recruitment of Th17 Cells during Cervical Cancer Progression. Cancer Res 2015;75:5248-59. [PMID: 26631268 DOI: 10.1158/0008-5472.CAN-15-0732] [Cited by in Crossref: 77] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
20 Shukla L, Ajram LA, Begg M, Evans B, Graves RH, Hodgson ST, Lynn SM, Miah AH, Percy JM, Procopiou PA, Richards SA, Slack RJ. 2,8-Diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine potent CCR4 antagonists capable of inducing receptor endocytosis. Eur J Med Chem 2016;115:14-25. [PMID: 26991939 DOI: 10.1016/j.ejmech.2016.02.058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2021. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Cordero OJ, Varela-Calviño R, López-González T, Calviño-Sampedro C, Viñuela JE, Mouriño C, Hernández-Rodríguez Í, Rodríguez-López M, Aspe de la Iglesia B, Pego-Reigosa JM. CD26 Expression on T Helper Populations and sCD26 Serum Levels in Patients with Rheumatoid Arthritis. PLoS One 2015;10:e0131992. [PMID: 26177310 DOI: 10.1371/journal.pone.0131992] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
23 Wang D, Yu W, Lian J, Wu Q, Liu S, Yang L, Li F, Huang L, Chen X, Zhang Z, Li A, Liu J, Sun Z, Wang J, Yuan W, Zhang Y. Th17 cells inhibit CD8+ T cell migration by systematically downregulating CXCR3 expression via IL-17A/STAT3 in advanced-stage colorectal cancer patients. J Hematol Oncol 2020;13:68. [PMID: 32503584 DOI: 10.1186/s13045-020-00897-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
24 Wirth TC. Spontaneous and therapeutic immune responses in hepatocellular carcinoma: implications for current and future immunotherapies. Expert Rev Gastroenterol Hepatol. 2014;8:101-110. [PMID: 24410473 DOI: 10.1586/17474124.2014.862497] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wacleche VS, Landay A, Routy JP, Ancuta P. The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017;9:E303. [PMID: 29048384 DOI: 10.3390/v9100303] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
26 Wacleche VS, Goulet JP, Gosselin A, Monteiro P, Soudeyns H, Fromentin R, Jenabian MA, Vartanian S, Deeks SG, Chomont N, Routy JP, Ancuta P. New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology 2016;13:59. [PMID: 27553844 DOI: 10.1186/s12977-016-0293-6] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
27 Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev. 2013;24:105-113. [PMID: 23168132 DOI: 10.1016/j.cytogfr.2012.10.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
28 Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-43. [PMID: 33850328 DOI: 10.1038/s41575-021-00438-0] [Cited by in Crossref: 127] [Cited by in F6Publishing: 103] [Article Influence: 127.0] [Reference Citation Analysis]
29 Dai K, Huang L, Huang YB, Chen ZB, Yang LH, Jiang YA. 1810011o10 Rik Inhibits the Antitumor Effect of Intratumoral CD8+ T Cells through Suppression of Notch2 Pathway in a Murine Hepatocellular Carcinoma Model. Front Immunol 2017;8:320. [PMID: 28382040 DOI: 10.3389/fimmu.2017.00320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
30 Sullivan JA, Jankowska-Gan E, Shi L, Roenneburg D, Hegde S, Greenspan DS, Wilkes DS, Denlinger LC, Burlingham WJ. Differential requirement for P2X7R function in IL-17 dependent vs. IL-17 independent cellular immune responses. Am J Transplant 2014;14:1512-22. [PMID: 24866539 DOI: 10.1111/ajt.12741] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
31 Repáraz D, Aparicio B, Llopiz D, Hervás-Stubbs S, Sarobe P. Therapeutic Vaccines against Hepatocellular Carcinoma in the Immune Checkpoint Inhibitor Era: Time for Neoantigens? Int J Mol Sci 2022;23:2022. [PMID: 35216137 DOI: 10.3390/ijms23042022] [Reference Citation Analysis]
32 Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in hepatocellular carcinoma: a meta-analysis. Carcinogenesis 2020;41:1682-94. [PMID: 33300549 DOI: 10.1093/carcin/bgaa106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]