BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci 2016;17:E1440. [PMID: 27589733 DOI: 10.3390/ijms17091440] [Cited by in Crossref: 86] [Cited by in F6Publishing: 67] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Bülbül EÖ, Karantas ID, Okur ME, Siafaka PI, Okur NÜ. Schizophrenia; A Review on Promising Drug Delivery Systems. CPD 2020;26:3871-83. [DOI: 10.2174/1381612826666200523173102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sadr SH, Davaran S, Alizadeh E, Salehi R, Ramazani A. PLA-based magnetic nanoparticles armed with thermo/pH responsive polymers for combination cancer chemotherapy. Journal of Drug Delivery Science and Technology 2018;45:240-54. [DOI: 10.1016/j.jddst.2018.03.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
3 Mkhatshwa M, Moremi JM, Makgopa K, Manicum AE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021;22:6546. [PMID: 34207182 DOI: 10.3390/ijms22126546] [Reference Citation Analysis]
4 Desmecht A, Steenhaut T, Pennetreau F, Hermans S, Riant O. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids. Chem Eur J 2018;24:12992-3001. [DOI: 10.1002/chem.201802301] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
5 Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019;30:733-46. [PMID: 29228781 DOI: 10.1089/ars.2017.7428] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
6 Patil A, Lakhani P, Taskar P, Wu K, Sweeney C, Avula B, Wang Y, Khan IA, Majumdar S. Formulation Development, Optimization, and In Vitro–In Vivo Characterization of Natamycin-Loaded PEGylated Nano-Lipid Carriers for Ocular Applications. Journal of Pharmaceutical Sciences 2018;107:2160-71. [DOI: 10.1016/j.xphs.2018.04.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
7 Van Rijt S, Habibovic P. Enhancing regenerative approaches with nanoparticles. J R S Interface. 2017;14:20170093. [PMID: 28404870 DOI: 10.1098/rsif.2017.0093] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 9.4] [Reference Citation Analysis]
8 Michels LR, Maciel TR, Nakama KA, Teixeira FEG, de Carvalho FB, Gundel A, de Araujo BV, Haas SE. Effects of Surface Characteristics of Polymeric Nanocapsules on the Pharmacokinetics and Efficacy of Antimalarial Quinine. Int J Nanomedicine 2019;14:10165-78. [PMID: 32021159 DOI: 10.2147/IJN.S227914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
9 Roque MC, da Silva CD, Lempek MR, Cassali GD, de Barros ALB, Melo MM, Oliveira MC. Preclinical toxicological study of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in synergic ratio. Biomed Pharmacother 2021;144:112307. [PMID: 34653762 DOI: 10.1016/j.biopha.2021.112307] [Reference Citation Analysis]
10 Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS Nano 2021;15:18794-821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Reference Citation Analysis]
11 Zhou L, Zou M, Zhu K, Ning S, Xia X. Development of 11-DGA-3-O-Gal-Modified Cantharidin Liposomes for Treatment of Hepatocellular Carcinoma. Molecules 2019;24:E3080. [PMID: 31450608 DOI: 10.3390/molecules24173080] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
12 Siafaka P, Okur ME, Ayla Ş, Er S, Cağlar EŞ, Okur NÜ. Design and characterization of nanocarriers loaded with Levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz J Pharm Sci 2019;55:e18295. [DOI: 10.1590/s2175-97902019000118295] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
13 Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021;29:716-41. [PMID: 33566719 DOI: 10.1080/1061186X.2021.1886301] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Henrich-noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine: Nanotechnology, Biology and Medicine 2019;17:359-79. [DOI: 10.1016/j.nano.2019.01.016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
15 Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017;9:E46. [PMID: 29036899 DOI: 10.3390/pharmaceutics9040046] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 15.6] [Reference Citation Analysis]
16 Nanaki S, Siafaka PI, Zachariadou D, Nerantzaki M, Giliopoulos DJ, Triantafyllidis KS, Kostoglou M, Nikolakaki E, Bikiaris DN. PLGA/SBA-15 mesoporous silica composite microparticles loaded with paclitaxel for local chemotherapy. Eur J Pharm Sci 2017;99:32-44. [PMID: 27939620 DOI: 10.1016/j.ejps.2016.12.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
17 Brunetti J, Falciani C, Bracci L, Pini A. Branched peptides as bioactive molecules for drug design. Peptide Science 2018;110:e24089. [DOI: 10.1002/pep2.24089] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
18 Gadekar A, Bhowmick S, Pandit A. A Glycotherapeutic Approach to Functionalize Biomaterials‐Based Systems. Adv Funct Mater 2020;30:1910031. [DOI: 10.1002/adfm.201910031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Rout GK, Shin HS, Gouda S, Sahoo S, Das G, Fraceto LF, Patra JK. Current advances in nanocarriers for biomedical research and their applications. Artif Cells Nanomed Biotechnol 2018;46:1053-62. [PMID: 29879850 DOI: 10.1080/21691401.2018.1478843] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Critical Reviews in Oncology/Hematology 2020;151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
21 Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in Nano-Enabled Platforms for the Treatment of Depression. Polymers (Basel) 2021;13:1431. [PMID: 33946703 DOI: 10.3390/polym13091431] [Reference Citation Analysis]
22 Du W, Zhang L, Li X, Ling G, Zhang P. Nuclear targeting Subcellular-delivery nanosystems for precise cancer treatment. International Journal of Pharmaceutics 2022;619:121735. [DOI: 10.1016/j.ijpharm.2022.121735] [Reference Citation Analysis]
23 Osman N, Devnarain N, Omolo CA, Fasiku V, Jaglal Y, Govender T. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1758. [PMID: 34643067 DOI: 10.1002/wnan.1758] [Reference Citation Analysis]
24 Lin H, Jia G, Sun P, Zhu L, Chen J, Wan Q, Xiao L, Liu X. In Vitro and In Vivo Evaluation of Desogestrel-Loaded Poly(D,L-lactic Acid) Nanoparticles. Journal of Nanomaterials 2019;2019:1-14. [DOI: 10.1155/2019/8491269] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Araújo RV, Santos SDS, Igne Ferreira E, Giarolla J. New Advances in General Biomedical Applications of PAMAM Dendrimers. Molecules 2018;23:E2849. [PMID: 30400134 DOI: 10.3390/molecules23112849] [Cited by in Crossref: 83] [Cited by in F6Publishing: 60] [Article Influence: 20.8] [Reference Citation Analysis]
26 Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021;:1-42. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Reference Citation Analysis]
27 Tjandra KC, Mccarthy N, Yang L, Laos AJ, Sharbeen G, Phillips PA, Forgham H, Sagnella SM, Whan RM, Kavallaris M, Thordarson P, Mccarroll JA. Identification of Novel Medulloblastoma Cell-Targeting Peptides for Use in Selective Chemotherapy Drug Delivery. J Med Chem 2020;63:2181-93. [DOI: 10.1021/acs.jmedchem.9b00851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Juneja R, Lyles Z, Vadarevu H, Afonin KA, Vivero-Escoto JL. Multimodal Polysilsesquioxane Nanoparticles for Combinatorial Therapy and Gene Delivery in Triple-Negative Breast Cancer. ACS Appl Mater Interfaces 2019;11:12308-20. [PMID: 30844224 DOI: 10.1021/acsami.9b00704] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
29 Roque MC, Franco MS, Vilela JMC, Andrade MS, de Barros ALB, Leite EA, Oliveira MC. Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. CDD 2019;16:829-38. [DOI: 10.2174/1567201816666191016112717] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
30 Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J Biomed Mater Res A 2018;106:2272-83. [PMID: 29577607 DOI: 10.1002/jbm.a.36410] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
31 Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020;15:661-84. [PMID: 33363624 DOI: 10.1016/j.ajps.2019.11.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 16] [Article Influence: 18.5] [Reference Citation Analysis]
32 Kotzabasaki M, Froudakis GE. Review of computer simulations on anti-cancer drug delivery in MOFs. Inorg Chem Front 2018;5:1255-72. [DOI: 10.1039/c7qi00645d] [Cited by in Crossref: 40] [Article Influence: 10.0] [Reference Citation Analysis]
33 Chaudhari R, Patel P, Meghani N, Nasra S, Kumar A. Fabrication of methotrexate-loaded gold nanoconjugates and its enhanced anticancer activity in breast cancer. 3 Biotech 2021;11:175. [PMID: 33927966 DOI: 10.1007/s13205-021-02718-7] [Reference Citation Analysis]
34 Del Castillo-Santaella T, Ortega-Oller I, Padial-Molina M, O'Valle F, Galindo-Moreno P, Jódar-Reyes AB, Peula-García JM. Formulation, Colloidal Characterization, and In Vitro Biological Effect of BMP-2 Loaded PLGA Nanoparticles for Bone Regeneration. Pharmaceutics 2019;11:E388. [PMID: 31382552 DOI: 10.3390/pharmaceutics11080388] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
35 Zhao Z, Li D, Wu Z, Wang Q, Ma Z, Zhang C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front Pharmacol 2020;11:616101. [PMID: 33391000 DOI: 10.3389/fphar.2020.616101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020;15:4899-918. [PMID: 32764924 DOI: 10.2147/IJN.S244712] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:5976. [PMID: 34641519 DOI: 10.3390/molecules26195976] [Reference Citation Analysis]
38 Xie Y, Tuguntaev RG, Mao C, Chen H, Tao Y, Wang S, Yang B, Guo W. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophys Rep 2020;6:193-210. [DOI: 10.1007/s41048-020-00117-8] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Filipova M, Elhelu OK, De Paoli SH, Fremuntova Z, Mosko T, Cmarko D, Simak J, Holada K. An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells. PLoS One 2018;13:e0206557. [PMID: 30379903 DOI: 10.1371/journal.pone.0206557] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
40 Parashar P, Mazhar I, Kanoujia J, Yadav A, Kumar P, Saraf SA, Saha S. Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model. Archives of Physiology and Biochemistry. [DOI: 10.1080/13813455.2019.1702702] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
41 Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Porfire A, Tefas L, Bulboacă AC. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. Int J Nanomedicine 2018;13:3093-103. [PMID: 29872296 DOI: 10.2147/IJN.S162087] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
42 Jedrzejczak-silicka M, Mijowska E. General Cytotoxicity and Its Application in Nanomaterial Analysis. In: Çelik TA, editor. Cytotoxicity. InTech; 2018. [DOI: 10.5772/intechopen.72578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Joseph A, Balakrishnan A, Shanmughan P, Maliakel B, Illathu Madhavamenon K. Micelle/Hydrogel Composite as a “Natural Self-Emulsifying Reversible Hybrid Hydrogel (N’SERH)” Enhances the Oral Bioavailability of Free (Unconjugated) Resveratrol. ACS Omega. [DOI: 10.1021/acsomega.2c00116] [Reference Citation Analysis]
44 Kakade P, Chatterjee A, Pandya A, Disouza J, Patravale V. Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022;618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Reference Citation Analysis]
45 Pradhan M, Alexander A, Singh MR, Singh D, Saraf S, Saraf S, Ajazuddin. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018;107:447-63. [PMID: 30103117 DOI: 10.1016/j.biopha.2018.07.156] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 11.5] [Reference Citation Analysis]
46 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
47 Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. Journal of Controlled Release 2018;275:162-76. [DOI: 10.1016/j.jconrel.2018.02.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
48 Ran D, Mao J, Zhan C, Xie C, Ruan H, Ying M, Zhou J, Lu WL, Lu W. d-Retroenantiomer of Quorum-Sensing Peptide-Modified Polymeric Micelles for Brain Tumor-Targeted Drug Delivery. ACS Appl Mater Interfaces 2017;9:25672-82. [PMID: 28548480 DOI: 10.1021/acsami.7b03518] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
49 Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics 2018;535:1-17. [DOI: 10.1016/j.ijpharm.2017.10.046] [Cited by in Crossref: 137] [Cited by in F6Publishing: 112] [Article Influence: 34.3] [Reference Citation Analysis]
50 Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opinion on Drug Delivery 2018;15:1085-104. [DOI: 10.1080/17425247.2018.1529756] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 12.3] [Reference Citation Analysis]
51 Luo Z, Jin K, Pang Q, Shen S, Yan Z, Jiang T, Zhu X, Yu L, Pang Z, Jiang X. On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy. ACS Appl Mater Interfaces 2017;9:31612-25. [DOI: 10.1021/acsami.7b10866] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
52 Pishavar E, Luo H, Bolander J, Atala A, Ramakrishna S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. Int J Mol Sci 2021;22:1776. [PMID: 33579019 DOI: 10.3390/ijms22041776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Fus-kujawa A, Sieroń Ł, Dobrzyńska E, Chajec Ł, Mendrek B, Jarosz N, Głowacki Ł, Dubaj K, Dubaj W, Kowalczuk A, Bajdak-rusinek K. Star Polymers as Non-Viral Carriers for Apoptosis Induction. Biomolecules 2022;12:608. [DOI: 10.3390/biom12050608] [Reference Citation Analysis]
54 Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother 2019;112:108614. [PMID: 30798129 DOI: 10.1016/j.biopha.2019.108614] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
55 Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018;13:1569-83. [PMID: 29588585 DOI: 10.2147/IJN.S155593] [Cited by in Crossref: 54] [Cited by in F6Publishing: 13] [Article Influence: 13.5] [Reference Citation Analysis]
56 López-saucedo F, Flores-rojas GG, Meléndez-ortiz HI, Morfín-gutierrez A, Luna-straffon MA, Bucio E. Stimuli-Responsive Nanomaterials for Drug Delivery. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier; 2019. pp. 375-424. [DOI: 10.1016/b978-0-12-814031-4.00014-3] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Hu X, Sun A, Kang W, Zhou Q. Strategies and knowledge gaps for improving nanomaterial biocompatibility. Environment International 2017;102:177-89. [DOI: 10.1016/j.envint.2017.03.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
58 Murugan B, Sagadevan S, Fatimah I, Oh W, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews 2021;10:933-53. [DOI: 10.1515/ntrev-2021-0067] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2020;17:675-93. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 2019;84:937-58. [DOI: 10.1007/s00280-019-03906-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
61 Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv 2020;2:5046-89. [DOI: 10.1039/d0na00478b] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
62 Fuller M, Kӧper I. Polyelectrolyte-Coated Gold Nanoparticles: The Effect of Salt and Polyelectrolyte Concentration on Colloidal Stability. Polymers (Basel) 2018;10:E1336. [PMID: 30961261 DOI: 10.3390/polym10121336] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
63 Yang T, Chang C, Yarmishyn AA, Mao Y, Yang Y, Wang M, Hsu C, Yang H, Hwang D, Chen S, Tsai M, Lai Y, Tzeng Y, Chang C, Chiou S. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomaterialia 2020;101:484-94. [DOI: 10.1016/j.actbio.2019.10.037] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
64 Khudoleeva VY, Utochnikova VV, Kalyakina AS, Deygen IM, Shiryaev AA, Marciniak Ł, Lebedev VA, Roslyakov IV, Garshev AV, Lepnev LS, Schepers U, Bräse S, Kuzmina NP. Surface modified Eu x La 1-x F 3 nanoparticles as luminescent biomarkers: Still plenty of room at the bottom. Dyes and Pigments 2017;143:348-55. [DOI: 10.1016/j.dyepig.2017.04.058] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
65 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Reference Citation Analysis]
66 Siafaka PI, Özcan Bülbül E, Dilsiz P, Karantas ID, Okur ME, Üstündağ Okur N. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: current status and applications. J Drug Target 2021;29:476-90. [PMID: 33269637 DOI: 10.1080/1061186X.2020.1859516] [Reference Citation Analysis]
67 Youshia J, Ali ME, Lamprecht A. Artificial neural network based particle size prediction of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2017;119:333-42. [DOI: 10.1016/j.ejpb.2017.06.030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
68 Röthlisberger P, Gasse C, Hollenstein M. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. Int J Mol Sci 2017;18:E2430. [PMID: 29144411 DOI: 10.3390/ijms18112430] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]
69 Nanaki S, Barmpalexis P, Papakonstantinou Z, Christodoulou E, Kostoglou M, Bikiaris DN. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations. J Pharm Sci 2018;107:2891-901. [PMID: 30096352 DOI: 10.1016/j.xphs.2018.07.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
70 Nguyen HX. Targeted Delivery of Surface-Modified Nanoparticles: Modulation of Inflammation for Acute Lung Injury. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. pp. 331-53. [DOI: 10.1007/978-3-030-06115-9_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
71 Sokolov IL, Cherkasov VR, Tregubov AA, Buiucli SR, Nikitin MP. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj 2017;1861:1530-44. [PMID: 28130158 DOI: 10.1016/j.bbagen.2017.01.027] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
72 Sun Y, Huffman K, Freeman WR, Sailor MJ, Cheng L. Intravitreal safety profiles of sol-gel mesoporous silica microparticles and the degradation product (Si(OH)4). Drug Deliv 2020;27:703-11. [PMID: 32393079 DOI: 10.1080/10717544.2020.1760401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Qi T, Shi Y, Huang Y, Fu X, Qiu S, Sun Q, Lin G. The role of antibody delivery formation in cancer therapy. J Drug Target 2020;28:574-84. [PMID: 32037905 DOI: 10.1080/1061186X.2020.1728537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
74 Zhou X, Shi K, Hao Y, Yang C, Zha R, Yi C, Qian Z. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020;15:26-41. [PMID: 32175016 DOI: 10.1016/j.ajps.2019.06.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
75 Zhang C, Luan H, Wang G. A novel thermosensitive triblock copolymer from 100% renewably sourced poly(trimethylene ether) glycol. J Appl Polym Sci 2018;135:46112. [DOI: 10.1002/app.46112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Minnelli C, Cianfruglia L, Laudadio E, Galeazzi R, Pisani M, Crucianelli E, Bizzaro D, Armeni T, Mobbili G. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2018;26:242-51. [PMID: 28795851 DOI: 10.1080/1061186X.2017.1365873] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
77 Sugimoto T, Yamazaki N, Hayashi T, Yuba E, Harada A, Kotaka A, Shinde C, Kumei T, Sumida Y, Fukushima M, Munekata Y, Maruyama K, Kono K. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release. Colloids Surf B Biointerfaces 2017;155:449-58. [PMID: 28463812 DOI: 10.1016/j.colsurfb.2017.04.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
78 Korina E, Naifert S, Palko N, Grishina M, Potemkin V, Morozov R, Adawy A, Merono R, Avdin V, Schelokov A, Popov V, Bol'shakov O. Probing Adsorption of Dipeptides on Anatase in H2 O and D2 O: Thermodynamics and Molecular Geometry. Chemphyschem 2021. [PMID: 34609055 DOI: 10.1002/cphc.202100540] [Reference Citation Analysis]
79 Pereira I, Zielińska A, Ferreira NR, Silva AM, Souto EB. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int J Pharm 2018;549:261-70. [PMID: 30075252 DOI: 10.1016/j.ijpharm.2018.07.068] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
80 Malekmohammadi S, Hadadzadeh H, Farrokhpour H, Amirghofran Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter 2018;14:2400-10. [PMID: 29512668 DOI: 10.1039/c7sm02248d] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
81 Giammona G, Craparo EF. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymers (Basel) 2019;11:E2066. [PMID: 31835853 DOI: 10.3390/polym11122066] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]