BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015;5:117. [PMID: 26106583 DOI: 10.3389/fonc.2015.00117] [Cited by in Crossref: 133] [Cited by in F6Publishing: 117] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Borrie AE, Maleki Vareki S. T Lymphocyte–Based Cancer Immunotherapeutics. Biology of T Cells - Part A. Elsevier; 2018. pp. 201-76. [DOI: 10.1016/bs.ircmb.2018.05.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
2 Kulasinghe A, Monkman J, Shah ET, Matigian N, Adams MN, O'Byrne K. Spatial Profiling Identifies Prognostic Features of Response to Adjuvant Therapy in Triple Negative Breast Cancer (TNBC). Front Oncol 2021;11:798296. [PMID: 35083152 DOI: 10.3389/fonc.2021.798296] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Moss ML, Minond D. Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017;2017:9673537. [PMID: 29230082 DOI: 10.1155/2017/9673537] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 11.6] [Reference Citation Analysis]
4 Compte M, Harwood SL, Muñoz IG, Navarro R, Zonca M, Perez-Chacon G, Erce-Llamazares A, Merino N, Tapia-Galisteo A, Cuesta AM, Mikkelsen K, Caleiras E, Nuñez-Prado N, Aznar MA, Lykkemark S, Martínez-Torrecuadrada J, Melero I, Blanco FJ, Bernardino de la Serna J, Zapata JM, Sanz L, Alvarez-Vallina L. A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat Commun 2018;9:4809. [PMID: 30442944 DOI: 10.1038/s41467-018-07195-w] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 12.3] [Reference Citation Analysis]
5 Buchanan T, Amouzegar A, Luke JJ. Next-Generation Immunotherapy Approaches in Melanoma. Curr Oncol Rep 2021;23:116. [PMID: 34342752 DOI: 10.1007/s11912-021-01104-z] [Reference Citation Analysis]
6 Jacobs J, Smits E, Lardon F, Pauwels P, Deschoolmeester V. Immune Checkpoint Modulation in Colorectal Cancer: What's New and What to Expect. J Immunol Res 2015;2015:158038. [PMID: 26605342 DOI: 10.1155/2015/158038] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
7 Sulaiman SA, Abu N, Ab-Mutalib NS, Low TY, Jamal R. Signatures of gene expression, DNA methylation and microRNAs of hepatocellular carcinoma with vascular invasion. Future Oncol 2019;15:2603-17. [PMID: 31339048 DOI: 10.2217/fon-2018-0909] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sim F, Leidner R, Bell RB. Immunotherapy for Head and Neck Cancer. Oral Maxillofac Surg Clin North Am 2019;31:85-100. [PMID: 30449528 DOI: 10.1016/j.coms.2018.09.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
9 Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019;5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Luu K, Shao Z, Schwarz H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J Leukoc Biol. 2020;107:731-738. [PMID: 32052477 DOI: 10.1002/jlb.2mr1119-224r] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Shakerin P, Sedighi Moghadam B, Baghaei K, Safaei Naraghi Z, Kamyab Hesari K, Asadzadeh Aghdaei H, Shokouhi Shoormasti R, Fazeli MS, Nourizadeh M. Increasing the expression of programmed death ligand 2 (PD-L2) but not 4-1BB ligand in colorectal cancer cells. Mol Biol Rep 2020;47:5689-97. [PMID: 32661872 DOI: 10.1007/s11033-020-05289-7] [Reference Citation Analysis]
12 Lote H, Cafferkey C, Chau I. PD-1 and PD-L1 blockade in gastrointestinal malignancies. Cancer Treat Rev. 2015;41:893-903. [PMID: 26412280 DOI: 10.1016/j.ctrv.2015.09.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
13 Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. Russ J Genet 2022;58:491-506. [DOI: 10.1134/s1022795422040020] [Reference Citation Analysis]
14 Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov 2018;17:509-27. [PMID: 29904196 DOI: 10.1038/nrd.2018.75] [Cited by in Crossref: 118] [Cited by in F6Publishing: 108] [Article Influence: 29.5] [Reference Citation Analysis]
15 Makkouk A, Sundaram V, Chester C, Chang S, Colevas AD, Sunwoo JB, Maecker H, Desai M, Kohrt HE. Characterizing CD137 upregulation on NK cells in patients receiving monoclonal antibody therapy. Ann Oncol 2017;28:415-20. [PMID: 27831501 DOI: 10.1093/annonc/mdw570] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
16 Almquist DR, Ahn DH, Bekaii-Saab TS. The Role of Immune Checkpoint Inhibitors in Colorectal Adenocarcinoma. BioDrugs 2020;34:349-62. [PMID: 32246441 DOI: 10.1007/s40259-020-00420-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
17 Perisé-barrios AJ, Serramia MJ, de la Mata J, Gomez R, Corbí AL, Domínguez-soto Á, Muñoz-fernandez MÁ. Polycationic carbosilane dendrimer decreases angiogenesis and tumor-associated macrophages in tumor-bearing mice. RSC Adv 2015;5:104110-5. [DOI: 10.1039/c5ra20623e] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
18 Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2020;11:629722. [PMID: 33597954 DOI: 10.3389/fimmu.2020.629722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 [DOI: 10.1101/638072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Anderson KG, Oda SK, Bates BM, Burnett MG, Rodgers Suarez M, Ruskin SL, Greenberg PD. Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy. J Immunother Cancer 2022;10:e003959. [PMID: 35264436 DOI: 10.1136/jitc-2021-003959] [Reference Citation Analysis]
21 Lagali NS, Badian RA, Liu X, Feldreich TR, Ärnlöv J, Utheim TP, Dahlin LB, Rolandsson O. Dendritic cell maturation in the corneal epithelium with onset of type 2 diabetes is associated with tumor necrosis factor receptor superfamily member 9. Sci Rep 2018;8:14248. [PMID: 30250206 DOI: 10.1038/s41598-018-32410-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
22 Mardiana S, Lai J, House IG, Beavis PA, Darcy PK. Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunology 2019;8:e1046. [PMID: 31073403 DOI: 10.1002/cti2.1046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
23 Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016;100:275-90. [PMID: 27256570 DOI: 10.1189/jlb.5RI0116-013RR] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
24 Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018;10:E80. [PMID: 29562664 DOI: 10.3390/cancers10030080] [Cited by in Crossref: 80] [Cited by in F6Publishing: 68] [Article Influence: 20.0] [Reference Citation Analysis]
25 Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2020;100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
26 Yadav M, Kowanetz M, Koeppen H. Immune Signaling in Carcinogenesis. In: Badve S, Kumar GL, editors. Predictive Biomarkers in Oncology. Cham: Springer International Publishing; 2019. pp. 327-34. [DOI: 10.1007/978-3-319-95228-4_28] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 He Y, van Bommel PE, Samplonius DF, Bremer E, Helfrich W. A versatile pretargeting approach for tumour-selective delivery and activation of TNF superfamily members. Sci Rep 2017;7:13301. [PMID: 29038485 DOI: 10.1038/s41598-017-13530-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
28 Geng T, Yan Y, Xu L, Cao M, Xu Y, Pu J, Yan JC. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARδ pathway. Cell Signal 2020;72:109628. [PMID: 32247042 DOI: 10.1016/j.cellsig.2020.109628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273-290. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Cited by in Crossref: 544] [Cited by in F6Publishing: 503] [Article Influence: 90.7] [Reference Citation Analysis]
30 Claeys E, Pauwels E, Humblet-Baron S, Provinciael B, Schols D, Waer M, Sprangers B, Vermeire K. Small Molecule Cyclotriazadisulfonamide Abrogates the Upregulation of the Human Receptors CD4 and 4-1BB and Suppresses In Vitro Activation and Proliferation of T Lymphocytes. Front Immunol 2021;12:650731. [PMID: 33968048 DOI: 10.3389/fimmu.2021.650731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Qiu L, Ning H, Zhu Y, Yang Q, Liu L, Luo L, Gao Y, Xing Y. Feedback regulation of antioxidant transcription factor NFE2L1 and immunostimulatory factor 41BBL mediates the crosstalk between oxidative stress and tumor immunity. Mol Immunol 2021;141:265-72. [PMID: 34902807 DOI: 10.1016/j.molimm.2021.12.001] [Reference Citation Analysis]
32 Bartkowiak T, Jaiswal AR, Ager CR, Chin R, Chen CH, Budhani P, Ai M, Reilley MJ, Sebastian MM, Hong DS, Curran MA. Activation of 4-1BB on Liver Myeloid Cells Triggers Hepatitis via an Interleukin-27-Dependent Pathway. Clin Cancer Res 2018;24:1138-51. [PMID: 29301830 DOI: 10.1158/1078-0432.CCR-17-1847] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
33 Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019;11:E628. [PMID: 31060337 DOI: 10.3390/cancers11050628] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
34 Deng J, Zhao S, Zhang X, Jia K, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther 2019;12:7347-53. [PMID: 31564917 DOI: 10.2147/OTT.S214211] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
35 Griffiths J, Hussain K, Smith HL, Sanders T, Cox KL, Semmrich M, Mårtensson L, Kim J, Inzhelevskaya T, Penfold CA, Tutt AL, Mockridge CI, Chan HC, English V, French RF, Teige I, Al-Shamkhani A, Glennie MJ, Frendeus BL, Willoughby JE, Cragg MS. Domain binding and isotype dictate the activity of anti-human OX40 antibodies. J Immunother Cancer 2020;8:e001557. [PMID: 33428585 DOI: 10.1136/jitc-2020-001557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
36 Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019;12:111. [PMID: 31665051 DOI: 10.1186/s13045-019-0798-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
37 McArdel SL, Dugast AS, Hoover ME, Bollampalli A, Hong E, Castano Z, Leonard SC, Pawar S, Mellen J, Muriuki K, McLaughlin DC, Bayhi N, Carpenter CL, Turka LA, Wickham TJ, Elloul S. Anti-tumor effects of RTX-240: an engineered red blood cell expressing 4-1BB ligand and interleukin-15. Cancer Immunol Immunother 2021;70:2701-19. [PMID: 34244816 DOI: 10.1007/s00262-021-03001-7] [Reference Citation Analysis]
38 Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. Int Rev Cell Mol Biol 2017;331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
39 Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci. 2020;45. [PMID: 32345776 DOI: 10.1007/s12038-020-0020-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
40 Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book 2016. [DOI: 10.1200/edbk_156572] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
41 Deng H, Zhang Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release 2018;290:28-45. [PMID: 30287266 DOI: 10.1016/j.jconrel.2018.09.026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
42 Eskiocak U, Guzman W, Wolf B, Cummings C, Milling L, Wu HJ, Ophir M, Lambden C, Bakhru P, Gilmore DC, Ottinger S, Liu L, McConaughy WK, He SQ, Wang C, Leung CL, Lajoie J, Carson WF 4th, Zizlsperger N, Schmidt MM, Anderson AC, Bobrowicz P, Schuetz TJ, Tighe R. Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight 2020;5:133647. [PMID: 32161196 DOI: 10.1172/jci.insight.133647] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
43 Zhou J, You BR, Yu Q. Agonist-induced 4-1BB activation prevents the development of Sjӧgren's syndrome-like sialadenitis in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2020;1866:165605. [PMID: 31740402 DOI: 10.1016/j.bbadis.2019.165605] [Reference Citation Analysis]
44 Vick E, Mahadevan D. Programming the immune checkpoint to treat hematologic malignancies. Expert Opin Investig Drugs 2016;25:755-70. [PMID: 27070269 DOI: 10.1080/13543784.2016.1175433] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
45 Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16:7-19. [PMID: 26694935 DOI: 10.1038/nrc.2015.5] [Cited by in Crossref: 501] [Cited by in F6Publishing: 497] [Article Influence: 83.5] [Reference Citation Analysis]
46 Hahn AW, Gill DM, Pal SK, Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 2017;9:681-92. [DOI: 10.2217/imt-2017-0024] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
47 Chauhan SR, Bharadwaj M. Gearing up T-cell immunotherapy in cervical cancer. Current Problems in Cancer 2018;42:175-88. [DOI: 10.1016/j.currproblcancer.2018.04.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
48 Cendrowicz E, Jacob L, Greenwald S, Tamir A, Pecker I, Tabakman R, Ghantous L, Tamir L, Kahn R, Avichzer J, Aronin A, Amsili S, Zorde-Khvalevsky E, Gozlan Y, Vlaming M, Huls G, van Meerten T, Dranitzki ME, Foley-Comer A, Pereg Y, Peled A, Chajut A, Bremer E. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J Exp Clin Cancer Res 2022;41:97. [PMID: 35287686 DOI: 10.1186/s13046-022-02256-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Yang J, Chen J, Wei J, Liu X, Cho WC. Immune checkpoint blockade as a potential therapeutic target in non-small cell lung cancer. Expert Opin Biol Ther 2016;16:1209-23. [PMID: 27426430 DOI: 10.1080/14712598.2016.1214265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
50 Lima PMA, Torres LC, Martins MR, da Matta MC, Lima JTO, de Mello MJG, da Silva LM, Cintra EB Jr, Lira CCR, da Fonte EJA, Forones NM. Soluble levels of sCD40L and s4-1BB are associated with a poor prognosis in elderly patients with colorectal cancer. J Surg Oncol 2020;121:901-5. [PMID: 31858621 DOI: 10.1002/jso.25813] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
51 Bukhari N, Al-Shamsi HO, Azam F. Update on the Treatment of Metastatic Urothelial Carcinoma. ScientificWorldJournal 2018;2018:5682078. [PMID: 29977169 DOI: 10.1155/2018/5682078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
52 Tzeng SY, Patel KK, Wilson DR, Meyer RA, Rhodes KR, Green JJ. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci U S A 2020;117:4043-52. [PMID: 32034097 DOI: 10.1073/pnas.1916039117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
53 Qi X, Li F, Wu Y, Cheng C, Han P, Wang J, Yang X. Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun 2019;10:2141. [PMID: 31105267 DOI: 10.1038/s41467-019-10088-1] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 14.0] [Reference Citation Analysis]
54 Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res 2019;38:87. [PMID: 30777100 DOI: 10.1186/s13046-019-1085-3] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 23.7] [Reference Citation Analysis]
55 Wang QW, Lin WW, Zhu YJ. Comprehensive analysis of a TNF family based-signature in diffuse gliomas with regard to prognosis and immune significance. Cell Commun Signal 2022;20:6. [PMID: 35000592 DOI: 10.1186/s12964-021-00814-y] [Reference Citation Analysis]
56 Veenstra CM, Krauss JC. Emerging Systemic Therapies for Colorectal Cancer. Clin Colon Rectal Surg 2018;31:179-91. [PMID: 29720904 DOI: 10.1055/s-0037-1602238] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
57 Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018;95:77-99. [PMID: 30174217 DOI: 10.1016/j.jaut.2018.08.007] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 16.0] [Reference Citation Analysis]
58 Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021;11:628138. [PMID: 33747948 DOI: 10.3389/fonc.2021.628138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Ferreira MN, Choe JH. Guiding immunotherapy combinations: Who gets what? Adv Drug Deliv Rev 2021;178:113962. [PMID: 34481029 DOI: 10.1016/j.addr.2021.113962] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Huang C, Zhu H, Yao Y, Bian Z, Zheng Y, Li L, Moutsopoulos HM, Gershwin ME, Lian Z. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. Journal of Autoimmunity 2019;104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
61 Furusawa A, Reiser J, Sadashivaiah K, Simpson H, Banerjee A. Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. J Immunother 2018;41:53-63. [PMID: 29271784 DOI: 10.1097/CJI.0000000000000206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
62 Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020;77:3693-710. [PMID: 32006051 DOI: 10.1007/s00018-020-03459-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
63 Hu J, Xia X, Gorlick R, Li S. Induction of NKG2D ligand expression on tumor cells by CD8+ T-cell engagement-mediated activation of nuclear factor-kappa B and p300/CBP-associated factor. Oncogene 2019;38:7433-46. [PMID: 31427736 DOI: 10.1038/s41388-019-0960-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
64 Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol 2016;6:233. [PMID: 27847783 DOI: 10.3389/fonc.2016.00233] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 14.3] [Reference Citation Analysis]
65 Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology 2016;28:64-72. [DOI: 10.1016/j.smim.2015.11.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
66 Li M, Garforth SJ, O'Connor KE, Su H, Lee DM, Celikgil A, Chaparro RJ, Seidel RD, Jones RB, Arav-Boger R, Almo SC, Goldstein H. T-cell receptor-specific immunotherapeutics drive selective in vivo HIV and CMV-specific T-cell expansion in humanized mice. J Clin Invest 2021:e141051. [PMID: 34673568 DOI: 10.1172/JCI141051] [Reference Citation Analysis]
67 Wang Y, Buck A, Grimaud M, Culhane AC, Kodangattil S, Razimbaud C, Bonal DM, Nguyen QD, Zhu Z, Wei K, O'Donnell ML, Huang Y, Signoretti S, Choueiri TK, Freeman GJ, Zhu Q, Marasco WA. Anti-CAIX BBζ CAR4/8 T cells exhibit superior efficacy in a ccRCC mouse model. Mol Ther Oncolytics 2022;24:385-99. [PMID: 35118195 DOI: 10.1016/j.omto.2021.12.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
68 Pennycuick A, Teixeira VH, AbdulJabbar K, Raza SEA, Lund T, Akarca AU, Rosenthal R, Kalinke L, Chandrasekharan DP, Pipinikas CP, Lee-Six H, Hynds RE, Gowers KHC, Henry JY, Millar FR, Hagos YB, Denais C, Falzon M, Moore DA, Antoniou S, Durrenberger PF, Furness AJ, Carroll B, Marceaux C, Asselin-Labat ML, Larson W, Betts C, Coussens LM, Thakrar RM, George J, Swanton C, Thirlwell C, Campbell PJ, Marafioti T, Yuan Y, Quezada SA, McGranahan N, Janes SM. Immune Surveillance in Clinical Regression of Preinvasive Squamous Cell Lung Cancer. Cancer Discov 2020;10:1489-99. [PMID: 32690541 DOI: 10.1158/2159-8290.CD-19-1366] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
69 Fröhlich A, Loick S, Bawden EG, Fietz S, Dietrich J, Diekmann E, Saavedra G, Fröhlich H, Niebel D, Sirokay J, Zarbl R, Gielen GH, Kristiansen G, Bootz F, Landsberg J, Dietrich D. Comprehensive analysis of tumor necrosis factor receptor TNFRSF9 (4-1BB) DNA methylation with regard to molecular and clinicopathological features, immune infiltrates, and response prediction to immunotherapy in melanoma. EBioMedicine 2020;52:102647. [PMID: 32028068 DOI: 10.1016/j.ebiom.2020.102647] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
70 Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim SY, Velickovic R, Wongchenko M, Yan Y, Lo S, Carlino MS, Guminski A, Saw RPM, Pang A, McGuire HM, Palendira U, Thompson JF, Rizos H, Silva IPD, Batten M, Scolyer RA, Long GV, Wilmott JS. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019;35:238-255.e6. [PMID: 30753825 DOI: 10.1016/j.ccell.2019.01.003] [Cited by in Crossref: 171] [Cited by in F6Publishing: 139] [Article Influence: 57.0] [Reference Citation Analysis]
71 Chin SM, Kimberlin CR, Roe-Zurz Z, Zhang P, Xu A, Liao-Chan S, Sen D, Nager AR, Oakdale NS, Brown C, Wang F, Yang Y, Lindquist K, Yeung YA, Salek-Ardakani S, Chaparro-Riggers J. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun 2018;9:4679. [PMID: 30410017 DOI: 10.1038/s41467-018-07136-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
72 So T, Ishii N. The TNF-TNFR Family of Co-signal Molecules. Adv Exp Med Biol 2019;1189:53-84. [PMID: 31758531 DOI: 10.1007/978-981-32-9717-3_3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
73 Stockis J, Roychoudhuri R, Halim TYF. Regulation of regulatory T cells in cancer. Immunology 2019;157:219-31. [PMID: 31032905 DOI: 10.1111/imm.13064] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
74 Sim F, Leidner R, Bell RB. Immunotherapy for Head and Neck Cancer. Hematol Oncol Clin North Am 2019;33:301-21. [PMID: 30833002 DOI: 10.1016/j.hoc.2018.12.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
75 Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017;114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Cited by in Crossref: 159] [Cited by in F6Publishing: 149] [Article Influence: 31.8] [Reference Citation Analysis]
76 Ju SA, Park SM, Joe Y, Chung HT, An WG, Kim BS. Anti-4-1BB antibody-based combination therapy augments antitumor immunity by enhancing CD11c+CD8+ T cells in renal cell carcinoma. Oncol Lett 2022;23:43. [PMID: 34976155 DOI: 10.3892/ol.2021.13161] [Reference Citation Analysis]
77 Weiss SA, Wolchok JD, Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin Cancer Res 2019;25:5191-201. [PMID: 30923036 DOI: 10.1158/1078-0432.CCR-18-1550] [Cited by in Crossref: 65] [Cited by in F6Publishing: 52] [Article Influence: 21.7] [Reference Citation Analysis]
78 Jackson Z, Roe A, Sharma AA, Lopes FBTP, Talla A, Kleinsorge-Block S, Zamborsky K, Schiavone J, Manjappa S, Schauner R, Lee G, Liu R, Caimi PF, Xiong Y, Krueger W, Worden A, Kadan M, Schneider D, Orentas R, Dropulic B, Sekaly RP, de Lima M, Wald DN, Reese JS. Automated Manufacture of Autologous CD19 CAR-T Cells for Treatment of Non-hodgkin Lymphoma. Front Immunol 2020;11:1941. [PMID: 32849651 DOI: 10.3389/fimmu.2020.01941] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
79 Marshall HT, Djamgoz MBA. Immuno-Oncology: Emerging Targets and Combination Therapies. Front Oncol. 2018;8:315. [PMID: 30191140 DOI: 10.3389/fonc.2018.00315] [Cited by in Crossref: 134] [Cited by in F6Publishing: 125] [Article Influence: 33.5] [Reference Citation Analysis]
80 Macek Jilkova Z, Hilleret MN, Gerster T, Sturm N, Mercey-Ressejac M, Zarski JP, Leroy V, Marche PN, Costentin C, Decaens T. Increased Intrahepatic Expression of Immune Checkpoint Molecules in Autoimmune Liver Disease. Cells 2021;10:2671. [PMID: 34685651 DOI: 10.3390/cells10102671] [Reference Citation Analysis]
81 Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol 2017;28:xii18-32. [PMID: 29045511 DOI: 10.1093/annonc/mdx238] [Cited by in Crossref: 130] [Cited by in F6Publishing: 129] [Article Influence: 32.5] [Reference Citation Analysis]
82 Morrow MP, Kraynyak KA, Sylvester AJ, Dallas M, Knoblock D, Boyer JD, Yan J, Vang R, Khan AS, Humeau L, Sardesai NY, Kim JJ, Plotkin S, Weiner DB, Trimble CL, Bagarazzi ML. Clinical and Immunologic Biomarkers for Histologic Regression of High-Grade Cervical Dysplasia and Clearance of HPV16 and HPV18 after Immunotherapy. Clin Cancer Res. 2018;24:276-294. [PMID: 29084917 DOI: 10.1158/1078-0432.ccr-17-2335] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
83 Spagnuolo A, Gridelli C. Combining immunotherapies to treat non-small cell lung cancer. Expert Rev Respir Med 2019;13:621-34. [PMID: 31116072 DOI: 10.1080/17476348.2019.1623027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018;9:444. [PMID: 29593717 DOI: 10.3389/fimmu.2018.00444] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
85 Gilbreth RN, Oganesyan VY, Amdouni H, Novarra S, Grinberg L, Barnes A, Baca M. Crystal structure of the human 4-1BB/4-1BBL complex. J Biol Chem 2018;293:9880-91. [PMID: 29720399 DOI: 10.1074/jbc.RA118.002803] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
86 Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020;8:e000966. [PMID: 33020242 DOI: 10.1136/jitc-2020-000966] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
87 Barsoumian HB, Batra L, Shrestha P, Bowen WS, Zhao H, Egilmez NK, Gomez-Gutierrez JG, Yolcu ES, Shirwan H. A Novel Form of 4-1BBL Prevents Cancer Development via Nonspecific Activation of CD4+ T and Natural Killer Cells. Cancer Res 2019;79:783-94. [PMID: 30770367 DOI: 10.1158/0008-5472.CAN-18-2401] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
88 Martinez-Perez AG, Perez-Trujillo JJ, Garza-Morales R, Loera-Arias MJ, Saucedo-Cardenas O, Garcia-Garcia A, Rodriguez-Rocha H, Montes-de-Oca-Luna R. 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci 2021;22:6210. [PMID: 34207500 DOI: 10.3390/ijms22126210] [Reference Citation Analysis]
89 Huppert LA, Gumusay O, Rugo HS. Emerging treatment strategies for metastatic triple-negative breast cancer. Ther Adv Med Oncol 2022;14:175883592210869. [DOI: 10.1177/17588359221086916] [Reference Citation Analysis]
90 Jiao G, Wang B. NK Cell Subtypes as Regulators of Autoimmune Liver Disease. Gastroenterol Res Pract 2016;2016:6903496. [PMID: 27462349 DOI: 10.1155/2016/6903496] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
91 Wu J, Li K, Peng W, Li H, Li Q, Wang X, Peng Y, Tang X, Fu X. Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling. Int Immunopharmacol 2019;74:105724. [PMID: 31272064 DOI: 10.1016/j.intimp.2019.105724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
92 Muik A, Altintas I, Gieseke F, Schoedel KB, Burm SM, Toker A, Salcedo TW, Verzijl D, Eisel D, Grunwitz C, Kranz LM, Vormehr M, Satijn DP, Diken M, Kreiter S, Sasser K, Ahmadi T, Türeci Ö, Breij EC, Jure-kunkel M, Sahin U. An Fc-inert PD-L1×4-1BB bispecific antibody mediates potent anti-tumor immunity in mice by combining checkpoint inhibition and conditional 4-1BB co-stimulation. OncoImmunology 2022;11:2030135. [DOI: 10.1080/2162402x.2022.2030135] [Reference Citation Analysis]
93 Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2016;44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Cited by in Crossref: 169] [Cited by in F6Publishing: 158] [Article Influence: 33.8] [Reference Citation Analysis]
94 Chae YK, Arya A, Iams W, Cruz M, Mohindra N, Villaflor V, Giles FJ. Immune checkpoint pathways in non-small cell lung cancer. Ann Transl Med 2018;6:88. [PMID: 29666811 DOI: 10.21037/atm.2017.09.30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
95 Balakrishnan PB, Ledezma DK, Cano-mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R, Sweeney EE. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Res 2022;15:2300-14. [DOI: 10.1007/s12274-021-3813-1] [Reference Citation Analysis]
96 Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). Int J Oncol 2018;52:1041-56. [PMID: 29484440 DOI: 10.3892/ijo.2018.4283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
97 Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res 2018;30:173-96. [PMID: 29861604 DOI: 10.21147/j.issn.1000-9604.2018.02.02] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
98 Hinterberger M, Giessel R, Fiore G, Graebnitz F, Bathke B, Wennier S, Chaplin P, Melero I, Suter M, Lauterbach H, Berraondo P, Hochrein H, Medina-Echeverz J. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J Immunother Cancer 2021;9:e001586. [PMID: 33579736 DOI: 10.1136/jitc-2020-001586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Atkins PW, Thompson DM. Combination avelumab and utomilumab immunotherapy can induce diabetic ketoacidosis. Diabetes Metab 2018;44:514-5. [PMID: 28648834 DOI: 10.1016/j.diabet.2017.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
100 Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131:49-57. [PMID: 29118009 DOI: 10.1182/blood-2017-06-741041] [Cited by in Crossref: 164] [Cited by in F6Publishing: 151] [Article Influence: 32.8] [Reference Citation Analysis]
101 Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L, Colantuoni V. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer 2017;1867:1-18. [PMID: 27864070 DOI: 10.1016/j.bbcan.2016.11.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
102 Kusters PJH, Lutgens E, Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2018;114:368-77. [PMID: 29309533 DOI: 10.1093/cvr/cvx248] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
103 Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020;17:600-12. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
104 Soldevilla MM, Villanueva H, Pastor F. Aptamers: A Feasible Technology in Cancer Immunotherapy. J Immunol Res 2016;2016:1083738. [PMID: 27413756 DOI: 10.1155/2016/1083738] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
105 Holohan DR, Lee JC, Bluestone JA. Shifting the Evolving CAR T Cell Platform into Higher Gear. Cancer Cell 2015;28:401-2. [PMID: 26461084 DOI: 10.1016/j.ccell.2015.09.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
106 Yushak M, Chapman P, Robert C, Kudchadkar R. Systemic Therapy Options for Patients With Unresectable Melanoma. American Society of Clinical Oncology Educational Book 2017. [DOI: 10.1200/edbk_174934] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
107 Xu Y, Chang L, Huang A, Liu X, Liu X, Zhou H, Liang JG, Liang P. Functional Detection of TNF Receptor Family Members by Affinity-Labeled Ligands. Sci Rep 2017;7:6944. [PMID: 28761167 DOI: 10.1038/s41598-017-06343-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
108 Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018;134:118-33. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
109 Menk AV, Scharping NE, Rivadeneira DB, Calderon MJ, Watson MJ, Dunstane D, Watkins SC, Delgoffe GM. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med. 2018;215:1091-1100. [PMID: 29511066 DOI: 10.1084/jem.20171068] [Cited by in Crossref: 107] [Cited by in F6Publishing: 102] [Article Influence: 26.8] [Reference Citation Analysis]
110 Geuijen C, Tacken P, Wang LC, Klooster R, van Loo PF, Zhou J, Mondal A, Liu YB, Kramer A, Condamine T, Volgina A, Hendriks LJA, van der Maaden H, Rovers E, Engels S, Fransen F, den Blanken-Smit R, Zondag-van der Zande V, Basmeleh A, Bartelink W, Kulkarni A, Marissen W, Huang CY, Hall L, Harvey S, Kim S, Martinez M, O'Brien S, Moon E, Albelda S, Kanellopoulou C, Stewart S, Nastri H, Bakker ABH, Scherle P, Logtenberg T, Hollis G, de Kruif J, Huber R, Mayes PA, Throsby M. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun 2021;12:4445. [PMID: 34290245 DOI: 10.1038/s41467-021-24767-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Curran MA, Fox BA, Redmond WL. Editorial: Advances in Combination Tumor Immunotherapy. Front Oncol 2015;5:198. [PMID: 26442210 DOI: 10.3389/fonc.2015.00198] [Reference Citation Analysis]
112 Yshii LM, Hohlfeld R, Liblau RS. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol 2017;13:755-63. [PMID: 29104289 DOI: 10.1038/nrneurol.2017.144] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 14.6] [Reference Citation Analysis]
113 Ajami M, Nazari M, Mahmoodzadeh H, Moazzeni SM. Recombinant CD137-Fc, its synthesis, and applications for improving the immune system functions, such as tumor immunotherapy and to reduce the inflammation due to the novel coronavirus. J Cell Biochem 2021. [PMID: 33993519 DOI: 10.1002/jcb.29928] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
114 Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother 2016;65:1243-8. [PMID: 27034234 DOI: 10.1007/s00262-016-1829-2] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 12.7] [Reference Citation Analysis]
115 Lan YL, Wang X, Xing JS, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in malignant glioma. Acta Neurol Belg 2017;117:613-21. [PMID: 27995487 DOI: 10.1007/s13760-016-0730-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
116 Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, Umana P, Klein C, Laubli H, Kashyap AS, Zippelius A. Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer 2020;8:e000238. [PMID: 32616554 DOI: 10.1136/jitc-2019-000238] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
117 Valpione S, Campana LG. Immunotherapy for advanced melanoma: future directions. Immunotherapy 2016;8:199-209. [PMID: 26809078 DOI: 10.2217/imt.15.111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
118 Alosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, Wallace J, Debatin KM, Schulz A, Jacobsen E, Möller P, Shamseldin HE, Abdulwahab F, Ibrahim N, Alardati H, Almuhizi F, Abosoudah IF, Basha TA, Chou J, Alkuraya FS, Geha RS. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol 2019;144:574-583.e5. [PMID: 30872117 DOI: 10.1016/j.jaci.2019.03.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
119 Kruspe S, Giangrande PH. Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017;5:E45. [PMID: 28792479 DOI: 10.3390/biomedicines5030045] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
120 Wright Q, Gonzalez Cruz JL, Wells JW, Leggatt GR. PD-1 and beyond to Activate T Cells in Cutaneous Squamous Cell Cancers: The Case for 4-1BB and VISTA Antibodies in Combination Therapy. Cancers (Basel) 2021;13:3310. [PMID: 34282763 DOI: 10.3390/cancers13133310] [Reference Citation Analysis]
121 Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol. 2018;9:2618. [PMID: 30524423 DOI: 10.3389/fimmu.2018.02618] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
122 Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, Qu Y, Xiong Y, Wang J, Chang Y, Bai Q, Wang Y, Liu L, Zhu Y, Xu L, Xia Y, Guo J, Xu J. Tumor-infiltrating TNFRSF9+ CD8+ T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology 2020;9:1838141. [PMID: 33178496 DOI: 10.1080/2162402X.2020.1838141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
123 Stecher C, Battin C, Leitner J, Zettl M, Grabmeier-Pfistershammer K, Höller C, Zlabinger GJ, Steinberger P. PD-1 Blockade Promotes Emerging Checkpoint Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells. Front Immunol 2017;8:572. [PMID: 28588576 DOI: 10.3389/fimmu.2017.00572] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
124 Huppert LA, Mariotti V, Chien AJ, Soliman HH. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat 2021. [PMID: 34716870 DOI: 10.1007/s10549-021-06406-1] [Reference Citation Analysis]
125 Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov 2018;17:197-223. [DOI: 10.1038/nrd.2017.227] [Cited by in Crossref: 322] [Cited by in F6Publishing: 296] [Article Influence: 64.4] [Reference Citation Analysis]
126 Lu Y, Li C, Du S, Chen X, Zeng X, Liu F, Chen Y, Chen J. 4-1BB Signaling Promotes Alveolar Macrophages-Mediated Pro-Fibrotic Responses and Crystalline Silica-Induced Pulmonary Fibrosis in Mice. Front Immunol 2018;9:1848. [PMID: 30250465 DOI: 10.3389/fimmu.2018.01848] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
127 Conciatori F, Bazzichetto C, Falcone I, Ciuffreda L, Ferretti G, Vari S, Ferraresi V, Cognetti F, Milella M. PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. Int J Mol Sci 2020;21:E5337. [PMID: 32727102 DOI: 10.3390/ijms21155337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
128 Hsu YO, Lu KL, Fu Y, Wang CW, Lu CW, Lin YF, Chang WC, Yeh KY, Hung SI, Chung WH, Chen CB. The Roles of Immunoregulatory Networks in Severe Drug Hypersensitivity. Front Immunol 2021;12:597761. [PMID: 33717075 DOI: 10.3389/fimmu.2021.597761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM, Jenkins CM, Zhuang S, Daman AW, Chiu EY, Bates BM, Greenberg PD. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J Exp Med 2020;217:e20191166. [PMID: 32860705 DOI: 10.1084/jem.20191166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
130 Ager CR, Reilley MJ, Nicholas C, Bartkowiak T, Jaiswal AR, Curran MA. Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity. Cancer Immunol Res 2017;5:676-84. [PMID: 28674082 DOI: 10.1158/2326-6066.CIR-17-0049] [Cited by in Crossref: 74] [Cited by in F6Publishing: 53] [Article Influence: 14.8] [Reference Citation Analysis]
131 Cai H, Wang W, Lin Z, Zhang Y, Wu B, Wan Y, Li R. Recombinant Costimulatory Fusion Proteins as Functional Immunomodulators Enhance Antitumor Activity in Murine B16F10 Melanoma. Vaccines (Basel) 2020;8:E223. [PMID: 32423130 DOI: 10.3390/vaccines8020223] [Reference Citation Analysis]
132 Bashir B, Wilson MA. Novel Immunotherapy Combinations. Curr Oncol Rep 2019;21:96. [PMID: 31696332 DOI: 10.1007/s11912-019-0851-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]