BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sekiguchi T, Sotoma S, Harada Y. Fluorescent nanodiamonds as a robust temperature sensor inside a single cell. Biophys Physicobiol 2018;15:229-34. [PMID: 30450272 DOI: 10.2142/biophysico.15.0_229] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Segawa TF, Igarashi R. Nanoscale quantum sensing with nitrogen-vacancy centers in nanodiamonds – A magnetic resonance perspective. Progress in Nuclear Magnetic Resonance Spectroscopy 2022. [DOI: 10.1016/j.pnmrs.2022.12.001] [Reference Citation Analysis]
2 Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. Adv Sci (Weinh) 2022;:e2200059. [PMID: 35343101 DOI: 10.1002/advs.202200059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Murakami A, Nagao K, Sakaguchi R, Kida K, Hara Y, Mori Y, Okabe K, Harada Y, Umeda M. Cell-autonomous control of intracellular temperature by unsaturation of phospholipid acyl chains. Cell Rep 2022;38:110487. [PMID: 35294880 DOI: 10.1016/j.celrep.2022.110487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Wu K, Vedelaar TA, Damle VG, Morita A, Mougnaud J, San Martin CR, Zhang Y, van der Pol DP, Ende-metselaar H, Zybert IR, Schirhagl R. Applying NV center-based quantum sensing to study intracellular free radical response upon viral infections. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sotoma S, Okita H, Chuma S, Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. BIOPHYSICS 2022;19:n/a. [DOI: 10.2142/biophysico.bppb-v19.0034] [Reference Citation Analysis]
6 Sotoma S. In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle. Biophysics 2022;62:122-124. [DOI: 10.2142/biophys.62.122] [Reference Citation Analysis]
7 Fujiwara M, Shikano Y. Diamond quantum thermometry: from foundations to applications. Nanotechnology 2021;32. [PMID: 34416739 DOI: 10.1088/1361-6528/ac1fb1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
8 Gerasimova EN, Yaroshenko VV, Talianov PM, Peltek OO, Baranov MA, Kapitanova PV, Zuev DA, Timin AS, Zyuzin MV. Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds. ACS Appl Mater Interfaces 2021;13:36737-46. [PMID: 34313441 DOI: 10.1021/acsami.1c05252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021;6:2077-107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
10 Nie L, Nusantara AC, Damle VG, Sharmin R, Evans EPP, Hemelaar SR, van der Laan KJ, Li R, Perona Martinez FP, Vedelaar T, Chipaux M, Schirhagl R. Quantum monitoring of cellular metabolic activities in single mitochondria. Sci Adv 2021;7:eabf0573. [PMID: 34138746 DOI: 10.1126/sciadv.abf0573] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
11 Wu Y, Alam MNA, Balasubramanian P, Winterwerber P, Ermakova A, Müller M, Wagner M, Jelezko F, Raabe M, Weil T. Fluorescent Nanodiamond–Nanogels for Nanoscale Sensing and Photodynamic Applications. Adv NanoBio Res 2021;1:2000101. [DOI: 10.1002/anbr.202000101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Pedroza-montero F, Santacruz-gómez K, Acosta-elías M, Silva-campa E, Meza-figueroa D, Soto-puebla D, Castaneda B, Urrutia-bañuelos E, Álvarez-bajo O, Navarro-espinoza S, Riera R, Pedroza-montero M. Thermometric Characterization of Fluorescent Nanodiamonds Suitable for Biomedical Applications. Applied Sciences 2021;11:4065. [DOI: 10.3390/app11094065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Baffou G. Anti-Stokes Thermometry in Nanoplasmonics. ACS Nano 2021;15:5785-92. [PMID: 33821619 DOI: 10.1021/acsnano.1c01112] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
14 Wu Y, Alam MNA, Balasubramanian P, Ermakova A, Fischer S, Barth H, Wagner M, Raabe M, Jelezko F, Weil T. Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing. Nano Lett 2021;21:3780-8. [PMID: 33881327 DOI: 10.1021/acs.nanolett.1c00043] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
15 Nishimura Y, Oshimi K, Umehara Y, Kumon Y, Miyaji K, Yukawa H, Shikano Y, Matsubara T, Fujiwara M, Baba Y, Teki Y. Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Sci Rep 2021;11:4248. [PMID: 33608613 DOI: 10.1038/s41598-021-83285-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M. In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. Sci Adv 2021;7:eabd7888. [PMID: 33523906 DOI: 10.1126/sciadv.abd7888] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
17 Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021;9:5621-7. [PMID: 34184014 DOI: 10.1039/d1tb00890k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Nexha A, Carvajal JJ, Pujol MC, Díaz F, Aguiló M. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. Nanoscale 2021;13:7913-87. [DOI: 10.1039/d0nr09150b] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 20.5] [Reference Citation Analysis]
19 Fujiwara M, Dohms A, Suto K, Nishimura Y, Oshimi K, Teki Y, Cai K, Benson O, Shikano Y. Real-time estimation of the optically detected magnetic resonance shift in diamond quantum thermometry toward biological applications. Phys Rev Research 2020;2. [DOI: 10.1103/physrevresearch.2.043415] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mohammed LJ, Omer KM. Carbon Dots as New Generation Materials for Nanothermometer: Review. Nanoscale Res Lett 2020;15:182. [PMID: 32960340 DOI: 10.1186/s11671-020-03413-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
21 Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N. Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 2020;152:e201912469. [PMID: 32421782 DOI: 10.1085/jgp.201912469] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
22 Damle VG, Sharmin R, Morita A, Nie L, Schirhagl R. Micro Versus Macro - The Effect of Environmental Confinement on Cellular Nanoparticle Uptake. Front Bioeng Biotechnol 2020;8:869. [PMID: 32793585 DOI: 10.3389/fbioe.2020.00869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
23 Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M. In situ measurement of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensor.. [DOI: 10.1101/2020.06.03.126789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Damle V, Wu K, De Luca O, Ortí-casañ N, Norouzi N, Morita A, de Vries J, Kaper H, Zuhorn IS, Eisel U, Vanpoucke DE, Rudolf P, Schirhagl R. Influence of diamond crystal orientation on the interaction with biological matter. Carbon 2020;162:1-12. [DOI: 10.1016/j.carbon.2020.01.115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Bradac C, Lim SF, Chang H, Aharonovich I. Optical Nanoscale Thermometry: From Fundamental Mechanisms to Emerging Practical Applications. Adv Optical Mater 2020;8:2000183. [DOI: 10.1002/adom.202000183] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
26 Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. Nanoscale 2020;12:8847-57. [PMID: 32254877 DOI: 10.1039/c9nr10701k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
27 Sotoma S, Harada Y. Polydopamine Coating as a Scaffold for Ring-Opening Chemistry To Functionalize Gold Nanoparticles. Langmuir 2019;35:8357-62. [PMID: 31194560 DOI: 10.1021/acs.langmuir.9b00762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
28 Hui YY, Chen OY, Azuma T, Chang B, Hsieh F, Chang H. All-Optical Thermometry with Nitrogen-Vacancy Centers in Nanodiamond-Embedded Polymer Films. J Phys Chem C 2019;123:15366-74. [DOI: 10.1021/acs.jpcc.9b04496] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
29 Choi S, Agafonov VN, Davydov VA, Plakhotnik T. Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis. ACS Photonics 2019;6:1387-92. [DOI: 10.1021/acsphotonics.9b00468] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
30 Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2020;1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
31 Han S, Raabe M, Hodgson L, Mantell J, Verkade P, Lasser T, Landfester K, Weil T, Lieberwirth I. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Lett 2019;19:2178-85. [PMID: 30810045 DOI: 10.1021/acs.nanolett.9b00752] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
32 Fujita H, Zhong C, Arai S, Suzuki M. Bright Dots and Smart Optical Microscopy to Probe Intracellular Events in Single Cells. Front Bioeng Biotechnol 2018;6:204. [PMID: 30662896 DOI: 10.3389/fbioe.2018.00204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]