BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sporty JL, Horálková L, Ehrhardt C. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opinion on Drug Metabolism & Toxicology 2008;4:333-45. [DOI: 10.1517/17425255.4.4.333] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Sadler R, Prime D, Burnell P, Martin G, Forbes B. Integrated in vitro experimental modelling of inhaled drug delivery: deposition, dissolution and absorption. Journal of Drug Delivery Science and Technology 2011;21:331-8. [DOI: 10.1016/s1773-2247(11)50051-6] [Cited by in Crossref: 10] [Article Influence: 0.9] [Reference Citation Analysis]
2 Benediktsdóttir BE, Arason AJ, Halldórsson S, Gudjónsson T, Másson M, Baldursson Ó. Drug Delivery Characteristics of the Progenitor Bronchial Epithelial Cell Line VA10. Pharm Res 2013;30:781-91. [DOI: 10.1007/s11095-012-0919-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
3 Murgia X, Yasar H, Carvalho-wodarz C, Loretz B, Gordon S, Schwarzkopf K, Schaefer U, Lehr C. Modelling the bronchial barrier in pulmonary drug delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus. European Journal of Pharmaceutics and Biopharmaceutics 2017;118:79-88. [DOI: 10.1016/j.ejpb.2017.03.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
4 Andrade F, Albuquerque J, Nascimento AV. Cell-based in vitro models for pulmonary permeability studies. Concepts and Models for Drug Permeability Studies. Elsevier; 2016. pp. 101-13. [DOI: 10.1016/b978-0-08-100094-6.00007-9] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
5 Salomon JJ, Endter S, Tachon G, Falson F, Buckley ST, Ehrhardt C. Transport of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) in human respiratory epithelial cells. European Journal of Pharmaceutics and Biopharmaceutics 2012;81:351-9. [DOI: 10.1016/j.ejpb.2012.03.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
6 Furugen A, Yamaguchi H, Tanaka N, Shiida N, Ogura J, Kobayashi M, Iseki K. Contribution of multidrug resistance-associated proteins (MRPs) to the release of prostanoids from A549 cells. Prostaglandins & Other Lipid Mediators 2013;106:37-44. [DOI: 10.1016/j.prostaglandins.2013.08.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
7 Salomon JJ, Galeron P, Schulte N, Morow PR, Severynse-Stevens D, Huwer H, Daum N, Lehr CM, Hickey AJ, Ehrhardt C. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther Deliv 2013;4:915-23. [PMID: 23919471 DOI: 10.4155/tde.13.62] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
8 Salomon JJ, Ehrhardt C. Nanoparticles attenuate P-glycoprotein/MDR1 function in A549 human alveolar epithelial cells. Eur J Pharm Biopharm 2011;77:392-7. [PMID: 21093586 DOI: 10.1016/j.ejpb.2010.11.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
9 Endter S, Francombe D, Ehrhardt C, Gumbleton M. RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. Journal of Pharmacy and Pharmacology 2009;61:583-91. [DOI: 10.1211/jpp.61.05.0006] [Cited by in Crossref: 67] [Cited by in F6Publishing: 53] [Article Influence: 5.6] [Reference Citation Analysis]
10 Chen Y, Kumar RK, Thomas PS, Herbert C. Th1/17-Biased Inflammatory Environment Associated with COPD Alters the Response of Airway Epithelial Cells to Viral and Bacterial Stimuli. Mediators Inflamm 2019;2019:7281462. [PMID: 31534438 DOI: 10.1155/2019/7281462] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
11 Chen P, Edelman JD, Gharib SA. Comparative evaluation of miRNA expression between in vitro and in vivo airway epithelium demonstrates widespread differences. Am J Pathol 2013;183:1405-10. [PMID: 24001474 DOI: 10.1016/j.ajpath.2013.07.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hutter V, Chau DY, Hilgendorf C, Brown A, Cooper A, Zann V, Pritchard DI, Bosquillon C. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1. Eur J Pharm Biopharm 2014;86:74-82. [PMID: 23816640 DOI: 10.1016/j.ejpb.2013.06.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
13 Künzi L, Mertes P, Schneider S, Jeannet N, Menzi C, Dommen J, Baltensperger U, Prévôt AS, Salathe M, Kalberer M, Geiser M. Responses of lung cells to realistic exposure of primary and aged carbonaceous aerosols. Atmospheric Environment 2013;68:143-50. [DOI: 10.1016/j.atmosenv.2012.11.055] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
14 Kim JH, An GH, Kim JY, Rasaei R, Kim WJ, Jin X, Woo DH, Han C, Yang SR, Kim JH, Hong SH. Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov 2021;7:48. [PMID: 33723255 DOI: 10.1038/s41420-021-00439-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Tewes F, Gobbo OL, Amaro MI, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery. Mol Pharm 2011;8:1887-98. [PMID: 21882837 DOI: 10.1021/mp200231c] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
16 Chidekel A, Zhu Y, Wang J, Mosko JJ, Rodriguez E, Shaffer TH. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells. Pulm Med. 2012;2012:380686. [PMID: 22988501 DOI: 10.1155/2012/380686] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
17 Paturi DK, Kwatra D, Ananthula HK, Pal D, Mitra AK. Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3). Int J Pharm 2010;384:32-8. [PMID: 19782742 DOI: 10.1016/j.ijpharm.2009.09.037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
18 Murnane D, Hutter V, Harang M. Pharmaceutical Aerosols and Pulmonary Drug Delivery. In: Colbeck I, Lazaridis M, editors. Aerosol Science. Chichester: John Wiley & Sons, Ltd; 2013. pp. 221-69. [DOI: 10.1002/9781118682555.ch10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
19 Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy (Cairo) 2012;2012:943982. [PMID: 22287976 DOI: 10.1155/2012/943982] [Cited by in Crossref: 72] [Cited by in F6Publishing: 87] [Article Influence: 7.2] [Reference Citation Analysis]
20 Olsson B, Bondesson E, Borgström L, Edsbäcker S, Eirefelt S, Ekelund K, Gustavsson L, Hegelund-myrbäck T. Pulmonary Drug Metabolism, Clearance, and Absorption. In: Smyth HD, Hickey AJ, editors. Controlled Pulmonary Drug Delivery. New York: Springer; 2011. pp. 21-50. [DOI: 10.1007/978-1-4419-9745-6_2] [Cited by in Crossref: 59] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
21 Baginski L, Tewes F, Buckley ST, Healy AM, Bakowsky U, Ehrhardt C. Investigations into the Fate of Inhaled Salmon Calcitonin at the Respiratory Epithelial Barrier. Pharm Res 2012;29:332-41. [DOI: 10.1007/s11095-011-0553-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
22 Fehrholz M, Seidenspinner S, Kunzmann S. Expression of surfactant protein B is dependent on cell density in H441 lung epithelial cells. PLoS One 2017;12:e0184556. [PMID: 28910374 DOI: 10.1371/journal.pone.0184556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
23 Hickey AJ. Controlled delivery of inhaled therapeutic agents. Journal of Controlled Release 2014;190:182-8. [DOI: 10.1016/j.jconrel.2014.05.058] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
24 Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2020;14:521-38. [PMID: 31826325 DOI: 10.1002/term.3004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538-541. [PMID: 20576850 DOI: 10.1126/science.1189345] [Cited by in Crossref: 837] [Cited by in F6Publishing: 718] [Article Influence: 69.8] [Reference Citation Analysis]
26 Sakamoto A, Matsumaru T, Yamamura N, Suzuki S, Uchida Y, Tachikawa M, Terasaki T. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar–Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Pharmaceutical Sciences 2015;104:3029-38. [DOI: 10.1002/jps.24381] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
27 Sakamoto A, Suzuki S, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Terasaki T. Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells. Journal of Pharmaceutical Sciences 2016;105:876-83. [DOI: 10.1002/jps.24661] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
28 Wang D. Current Research Method in Transporter Study. Adv Exp Med Biol 2019;1141:203-40. [PMID: 31571166 DOI: 10.1007/978-981-13-7647-4_4] [Reference Citation Analysis]
29 Welch J, Wallace J, Lansley AB, Roper C. Evaluation of the toxicity of sodium dodecyl sulphate (SDS) in the MucilAir™ human airway model in vitro. Regul Toxicol Pharmacol 2021;125:105022. [PMID: 34333067 DOI: 10.1016/j.yrtph.2021.105022] [Reference Citation Analysis]
30 Min KA, Talattof A, Tsume Y, Stringer KA, Yu JY, Lim DH, Rosania GR. The extracellular microenvironment explains variations in passive drug transport across different airway epithelial cell types. Pharm Res 2013;30:2118-32. [PMID: 23708857 DOI: 10.1007/s11095-013-1069-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
31 Hibbitts A, O'Mahony AM, Forde E, Nolan L, Ogier J, Desgranges S, Darcy R, MacLoughlin R, O'Driscoll CM, Cryan SA. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J Aerosol Med Pulm Drug Deliv 2014;27:466-77. [PMID: 24665866 DOI: 10.1089/jamp.2013.1045] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
32 Hutter V, Hilgendorf C, Cooper A, Zann V, Pritchard DI, Bosquillon C. Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates. Eur J Pharm Sci 2012;47:481-9. [PMID: 22820031 DOI: 10.1016/j.ejps.2012.07.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
33 Gukasyan HJ, Uchiyama T, Kim KJ, Ehrhardt C, Wu SK, Borok Z, Crandall ED, Lee VHL. Oligopeptide Transport in Rat Lung Alveolar Epithelial Cells is Mediated by Pept2. Pharm Res 2017;34:2488-97. [PMID: 28831683 DOI: 10.1007/s11095-017-2234-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
34 Takano M, Kawami M, Aoki A, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opinion on Drug Delivery 2014;12:813-25. [DOI: 10.1517/17425247.2015.992778] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
35 Jimenez FR, Lewis JB, Belgique ST, Milner DC, Lewis AL, Dunaway TM, Egbert KM, Winden DR, Arroyo JA, Reynolds PR. Cigarette smoke and decreased oxygen tension inhibit pulmonary claudin-6 expression. Exp Lung Res 2016;42:440-52. [PMID: 27982694 DOI: 10.1080/01902148.2016.1261309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
36 Hu X, Yang F, Liu C, Ehrhardt C, Liao Y. In vitro uptake and transport studies of PEG-PLGA polymeric micelles in respiratory epithelial cells. European Journal of Pharmaceutics and Biopharmaceutics 2017;114:29-37. [DOI: 10.1016/j.ejpb.2017.01.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
37 Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya K, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. Journal of Pharmaceutical Sciences 2017;106:2234-44. [DOI: 10.1016/j.xphs.2017.04.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
38 Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opinion on Drug Delivery 2016;13:667-90. [DOI: 10.1517/17425247.2016.1140144] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
39 Katsumiti A, Ruenraroengsak P, Cajaraville MP, Thorley AJ, Tetley TD. Immortalisation of primary human alveolar epithelial lung cells using a non-viral vector to study respiratory bioreactivity in vitro. Sci Rep 2020;10:20486. [PMID: 33235275 DOI: 10.1038/s41598-020-77191-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Macdonald C, Shao D, Oli A, Agu RU. Characterization of Calu-3 cell monolayers as a model of bronchial epithelial transport: organic cation interaction studies. J Drug Target 2013;21:97-106. [PMID: 23050869 DOI: 10.3109/1061186X.2012.731068] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
41 Luo S, Li P, Li S, Du Z, Hu X, Fu Y, Zhang Z. N,N-Dimethyl Tertiary Amino Group Mediated Dual Pancreas- and Lung-Targeting Therapy against Acute Pancreatitis. Mol Pharm 2017;14:1771-81. [PMID: 28247763 DOI: 10.1021/acs.molpharmaceut.7b00028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
42 Lee DF, Lethem MI, Lansley AB. A comparison of three mucus-secreting airway cell lines (Calu-3, SPOC1 and UNCN3T) for use as biopharmaceutical models of the nose and lung. Eur J Pharm Biopharm 2021;167:159-74. [PMID: 34332033 DOI: 10.1016/j.ejpb.2021.07.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Zhu Y, Chidekel A, Shaffer TH. Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses. Crit Care Res Pract 2010;2010:394578. [PMID: 20948883 DOI: 10.1155/2010/394578] [Cited by in Crossref: 42] [Cited by in F6Publishing: 49] [Article Influence: 3.5] [Reference Citation Analysis]
44 Agu RU, Ugwoke MI. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opinion on Drug Delivery 2010;8:57-69. [DOI: 10.1517/17425247.2011.543896] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
45 Liu X, Jin L, Upham JW, Roberts MS. The development of models for the evaluation of pulmonary drug disposition. Expert Opinion on Drug Metabolism & Toxicology 2013;9:487-505. [DOI: 10.1517/17425255.2013.754009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
46 Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021;:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Reference Citation Analysis]
47 Sakagami M. In vitro, ex vivo and in vivo methods of lung absorption for inhaled drugs. Advanced Drug Delivery Reviews 2020;161-162:63-74. [DOI: 10.1016/j.addr.2020.07.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
48 Ehrhardt C. Inhalation Biopharmaceutics: Progress Towards Comprehending the Fate of Inhaled Medicines. Pharm Res 2017;34:2451-3. [DOI: 10.1007/s11095-017-2304-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
49 Mukherjee M, Pritchard D, Bosquillon C. Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. International Journal of Pharmaceutics 2012;426:7-14. [DOI: 10.1016/j.ijpharm.2011.12.036] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
50 Beck-broichsitter M, Schmehl T, Seeger W, Gessler T. Evaluating the Controlled Release Properties of Inhaled Nanoparticles Using Isolated, Perfused, and Ventilated Lung Models. Journal of Nanomaterials 2011;2011:1-16. [DOI: 10.1155/2011/163791] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
51 Haghi M, Salama R, Traini D, Bebawy M, Young PM. Modification of disodium cromoglycate passage across lung epithelium in vitro via incorporation into polymeric microparticles. AAPS J 2012;14:79-86. [PMID: 22203523 DOI: 10.1208/s12248-011-9317-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
52 Salomon JJ, Muchitsch VE, Gausterer JC, Schwagerus E, Huwer H, Daum N, Lehr C, Ehrhardt C. The Cell Line NCl-H441 Is a Useful in Vitro Model for Transport Studies of Human Distal Lung Epithelial Barrier. Mol Pharmaceutics 2014;11:995-1006. [DOI: 10.1021/mp4006535] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 9.0] [Reference Citation Analysis]
53 Bosquillon C. Drug transporters in the lung--do they play a role in the biopharmaceutics of inhaled drugs? J Pharm Sci 2010;99:2240-55. [PMID: 19950388 DOI: 10.1002/jps.21995] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 8.6] [Reference Citation Analysis]
54 Verma RK, Ibrahim M, Garcia-contreras L. Lung Anatomy and Physiology and Their Implications for Pulmonary Drug Delivery. In: Nokhodchi A, Martin GP, editors. Pulmonary Drug Delivery. Chichester: John Wiley & Sons, Ltd; 2015. pp. 1-18. [DOI: 10.1002/9781118799536.ch1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
55 Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine 2011;6:2591-605. [PMID: 22114491 DOI: 10.2147/IJN.S24552] [Cited by in Crossref: 7] [Cited by in F6Publishing: 29] [Article Influence: 0.6] [Reference Citation Analysis]
56 Munis AM, Hyde SC, Gill DR. A human surfactant B deficiency air-liquid interface cell culture model suitable for gene therapy applications. Mol Ther Methods Clin Dev 2021;20:237-46. [PMID: 33426150 DOI: 10.1016/j.omtm.2020.11.013] [Reference Citation Analysis]
57 Mertes P, Praplan AP, Künzi L, Dommen J, Baltensperger U, Geiser M, Weingartner E, Ricka J, Fierz M, Kalberer M. A Compact and Portable Deposition Chamber to Study Nanoparticles in Air-Exposed Tissue. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2013;26:228-35. [DOI: 10.1089/jamp.2012.0985] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
58 Hunt CA, Ropella GE, Lam TN, Tang J, Kim SH, Engelberg JA, Sheikh-Bahaei S. At the biological modeling and simulation frontier. Pharm Res 2009;26:2369-400. [PMID: 19756975 DOI: 10.1007/s11095-009-9958-3] [Cited by in Crossref: 60] [Cited by in F6Publishing: 41] [Article Influence: 4.6] [Reference Citation Analysis]
59 Salomon JJ, Gausterer JC, Yahara T, Hosoya K, Huwer H, Hittinger M, Schneider-Daum N, Lehr CM, Ehrhardt C. Organic cation transporter function in different in vitro models of human lung epithelium. Eur J Pharm Sci 2015;80:82-8. [PMID: 26296865 DOI: 10.1016/j.ejps.2015.08.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
60 Ren H, Birch NP, Suresh V. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport. PLoS One 2016;11:e0165225. [PMID: 27780255 DOI: 10.1371/journal.pone.0165225] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
61 Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021;:113901. [PMID: 34331989 DOI: 10.1016/j.addr.2021.113901] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
62 de Souza Carvalho C, Daum N, Lehr CM. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev 2014;75:129-40. [PMID: 24880145 DOI: 10.1016/j.addr.2014.05.014] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 8.0] [Reference Citation Analysis]
63 Ihekwereme C, Esimone C, Shao D, Agu RU. Preliminary studies on validation of calu-3 cell line as a model for screening respiratory mucosa irritation and toxicity. Pharmaceutics 2014;6:268-80. [PMID: 24962675 DOI: 10.3390/pharmaceutics6020268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
64 Salomon JJ, Hagos Y, Petzke S, Kühne A, Gausterer JC, Hosoya K, Ehrhardt C. Beta-2 Adrenergic Agonists Are Substrates and Inhibitors of Human Organic Cation Transporter 1. Mol Pharm 2015;12:2633-41. [PMID: 25751092 DOI: 10.1021/mp500854e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
65 Jimenez FR, Lewis JB, Belgique ST, Wood TT, Reynolds PR. Developmental lung expression and transcriptional regulation of claudin-6 by TTF-1, Gata-6, and FoxA2. Respir Res 2014;15:70. [PMID: 24970044 DOI: 10.1186/1465-9921-15-70] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
66 Porter JL, Bukey BR, Geyer AJ, Willnauer CP, Reynolds PR. Immunohistochemical detection and regulation of α5 nicotinic acetylcholine receptor (nAChR) subunits by FoxA2 during mouse lung organogenesis. Respir Res. 2011;12:82. [PMID: 21682884 DOI: 10.1186/1465-9921-12-82] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
67 Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020;68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
68 Horálková L, Radziwon A, Endter S, Andersen R, Koslowski R, Radomski MW, Dolezal P, Ehrhardt C. Characterisation of the R3/1 cell line as an alveolar epithelial cell model for drug disposition studies. Eur J Pharm Sci 2009;36:444-50. [PMID: 19103287 DOI: 10.1016/j.ejps.2008.11.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
69 Lewinski NA, Liu NJ, Asimakopoulou A, Papaioannou E, Konstandopoulos A, Riediker M. Air-Liquid Interface Cell Exposures to Nanoparticle Aerosols. Methods Mol Biol 2017;1570:301-13. [PMID: 28238146 DOI: 10.1007/978-1-4939-6840-4_21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
70 Reczyńska K, Tharkar P, Kim SY, Wang Y, Pamuła E, Chan HK, Chrzanowski W. Animal models of smoke inhalation injury and related acute and chronic lung diseases. Adv Drug Deliv Rev 2018;123:107-34. [PMID: 29108862 DOI: 10.1016/j.addr.2017.10.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
71 Hittinger M, Juntke J, Kletting S, Schneider-daum N, de Souza Carvalho C, Lehr C. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Advanced Drug Delivery Reviews 2015;85:44-56. [DOI: 10.1016/j.addr.2014.10.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
72 Baginski L, Tachon G, Falson F, Patton JS, Bakowsky U, Ehrhardt C. Reverse transcription polymerase chain reaction (RT-PCR) analysis of proteolytic enzymes in cultures of human respiratory epithelial cells. J Aerosol Med Pulm Drug Deliv 2011;24:89-101. [PMID: 21410325 DOI: 10.1089/jamp.2010.0842] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
73 Tollstadius BF, Silva ACGD, Pedralli BCO, Valadares MC. Carbendazim induces death in alveolar epithelial cells: A comparison between submerged and at the air-liquid interface cell culture. Toxicol In Vitro 2019;58:78-85. [PMID: 30851412 DOI: 10.1016/j.tiv.2019.03.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
74 Ibrahim M, Garcia-Contreras L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv. 2013;4:1027-1045. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
75 Salomon JJ, Ehrhardt C. Organic cation transporters in the blood-air barrier: expression and implications for pulmonary drug delivery. Ther Deliv 2012;3:735-47. [PMID: 22838069 DOI: 10.4155/tde.12.51] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
76 Selo MA, Sake JA, Ehrhardt C, Salomon JJ. Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020;21:E9168. [PMID: 33271927 DOI: 10.3390/ijms21239168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]