BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pang S, Wang S, Rodríguez-Patón A, Li P, Wang X. An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network. PLoS One 2019;14:e0221720. [PMID: 31513631 DOI: 10.1371/journal.pone.0221720] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Yao MM, Du H, Hartman M, Chan WP, Feng M. End-to-End Calcification Distribution Pattern Recognition for Mammograms: An Interpretable Approach with GNN. Diagnostics 2022;12:1376. [DOI: 10.3390/diagnostics12061376] [Reference Citation Analysis]
2 Yu CJ, Yeh HJ, Chang CC, Tang JH, Kao WY, Chen WC, Huang YJ, Li CH, Chang WH, Lin YT, Sufriyana H, Su EC. Lightweight deep neural networks for cholelithiasis and cholecystitis detection by point-of-care ultrasound. Comput Methods Programs Biomed 2021;211:106382. [PMID: 34555590 DOI: 10.1016/j.cmpb.2021.106382] [Reference Citation Analysis]
3 Li F, Liu Z, Shen W, Wang Y, Wang Y, Ge C, Sun F, Lan P. A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease. IEEE Access 2021;9:66346-60. [DOI: 10.1109/access.2021.3073929] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
4 Souid A, Sakli N, Sakli H. Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2. Applied Sciences 2021;11:2751. [DOI: 10.3390/app11062751] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
5 Normando EM, Yap TE, Maddison J, Miodragovic S, Bonetti P, Almonte M, Mohammad NG, Ameen S, Crawley L, Ahmed F, Bloom PA, Cordeiro MF. A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells). Expert Rev Mol Diagn 2020;20:737-48. [PMID: 32310684 DOI: 10.1080/14737159.2020.1758067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
6 Diao X, Huo Y, Yan Z, Wang H, Yuan J, Wang Y, Cai J, Zhao W. An Application of Machine Learning to Etiological Diagnosis of Secondary Hypertension: Retrospective Study Using Electronic Medical Records. JMIR Med Inform 2021;9:e19739. [PMID: 33492233 DOI: 10.2196/19739] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]