BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El Daker S, Sacchi A, Tempestilli M, Carducci C, Goletti D, Vanini V, Colizzi V, Lauria FN, Martini F, Martino A. Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One 2015;10:e0123772. [PMID: 25879532 DOI: 10.1371/journal.pone.0123772] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Goletti D, Petruccioli E, Joosten SA, Ottenhoff TH. Tuberculosis Biomarkers: From Diagnosis to Protection. Infect Dis Rep 2016;8:6568. [PMID: 27403267 DOI: 10.4081/idr.2016.6568] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 14.3] [Reference Citation Analysis]
2 Magcwebeba T, Dorhoi A, du Plessis N. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis. Front Immunol 2019;10:917. [PMID: 31114578 DOI: 10.3389/fimmu.2019.00917] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
3 Payne KK, Aqbi HF, Butler SE, Graham L, Keim RC, Wan W, Idowu MO, Bear HD, Wang XY, Manjili MH. Gr1-/low CD11b-/low MHCII+ myeloid cells boost T cell anti-tumor efficacy. J Leukoc Biol 2018;104:1215-28. [PMID: 29985529 DOI: 10.1002/JLB.5A0717-276RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
4 Remot A, Doz E, Winter N. Neutrophils and Close Relatives in the Hypoxic Environment of the Tuberculous Granuloma: New Avenues for Host-Directed Therapies? Front Immunol 2019;10:417. [PMID: 30915076 DOI: 10.3389/fimmu.2019.00417] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
5 Davids M, Pooran A, Smith L, Tomasicchio M, Dheda K. The Frequency and Effect of Granulocytic Myeloid-Derived Suppressor Cells on Mycobacterial Survival in Patients With Tuberculosis: A Preliminary Report. Front Immunol 2021;12:676679. [PMID: 34149712 DOI: 10.3389/fimmu.2021.676679] [Reference Citation Analysis]
6 Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016;44:476-91. [DOI: 10.1016/j.immuni.2016.02.014] [Cited by in Crossref: 98] [Cited by in F6Publishing: 85] [Article Influence: 16.3] [Reference Citation Analysis]
7 Brighenti S, Joosten SA. Friends and foes of tuberculosis: modulation of protective immunity. J Intern Med 2018. [PMID: 29804292 DOI: 10.1111/joim.12778] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
8 Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, Eri R, Larsson M, Shankar EM. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front Microbiol 2019;10:2789. [PMID: 31921004 DOI: 10.3389/fmicb.2019.02789] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
9 Kumar R, Subbian S. Immune Correlates of Non-Necrotic and Necrotic Granulomas in Pulmonary Tuberculosis: A Pilot Study. JoR 2021;1:248-59. [DOI: 10.3390/jor1040023] [Reference Citation Analysis]
10 du Plessis N, Kotze LA, Leukes V, Walzl G. Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis. Front Cell Infect Microbiol 2018;8:332. [PMID: 30298121 DOI: 10.3389/fcimb.2018.00332] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
11 Chavez-Galan L, Vesin D, Uysal H, Blaser G, Benkhoucha M, Ryffel B, Quesniaux VFJ, Garcia I. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy. Front Immunol 2017;8:999. [PMID: 28890718 DOI: 10.3389/fimmu.2017.00999] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
12 Kulkarni U, Herrmenau C, Win SJ, Bauer M, Kamradt T. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells. PLoS One 2018;13:e0192304. [PMID: 29466409 DOI: 10.1371/journal.pone.0192304] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
13 Khan A, Singh VK, Hunter RL, Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol 2019;106:275-82. [PMID: 30938876 DOI: 10.1002/JLB.MR0318-095RR] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 10.3] [Reference Citation Analysis]
14 Sacchi A, Tumino N, Sabatini A, Cimini E, Casetti R, Bordoni V, Grassi G, Agrati C. Myeloid-Derived Suppressor Cells Specifically Suppress IFN-γ Production and Antitumor Cytotoxic Activity of Vδ2 T Cells. Front Immunol 2018;9:1271. [PMID: 29928279 DOI: 10.3389/fimmu.2018.01271] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
15 Barbosa Bomfim CC, Pinheiro Amaral E, Santiago-Carvalho I, Almeida Santos G, Machado Salles É, Hastreiter AA, Silva do Nascimento R, Almeida FM, Lopes Biá Ventura Simão T, Linhares Rezende A, Hiroyuki Hirata M, Ambrósio Fock R, Álvarez JM, Lasunskaia EB, D'Império Lima MR. Harmful Effects of Granulocytic Myeloid-Derived Suppressor Cells on Tuberculosis Caused by Hypervirulent Mycobacteria. J Infect Dis 2021;223:494-507. [PMID: 33206171 DOI: 10.1093/infdis/jiaa708] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Rajamanickam A, Munisankar S, Dolla CK, Babu S. Undernutrition is associated with perturbations in T cell-, B cell-, monocyte- and dendritic cell- subsets in latent Mycobacterium tuberculosis infection. PLoS One 2019;14:e0225611. [PMID: 31821327 DOI: 10.1371/journal.pone.0225611] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
17 Esher SK, Fidel PL Jr, Noverr MC. Candida/Staphylococcal Polymicrobial Intra-Abdominal Infection: Pathogenesis and Perspectives for a Novel Form of Trained Innate Immunity. J Fungi (Basel) 2019;5:E37. [PMID: 31075836 DOI: 10.3390/jof5020037] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
18 da Silva SF, da Silva Cavalcante LR, Fonseca Junior EA, da Silva JM, Lopes JC, Damazo AS. Analysis of the myeloid-derived suppressor cells and annexin A1 in multibacillary leprosy and reactional episodes. BMC Infect Dis 2021;21:1050. [PMID: 34627197 DOI: 10.1186/s12879-021-06744-x] [Reference Citation Analysis]
19 Leisching GR. Susceptibility to Tuberculosis Is Associated With PI3K-Dependent Increased Mobilization of Neutrophils. Front Immunol 2018;9:1669. [PMID: 30065729 DOI: 10.3389/fimmu.2018.01669] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
20 Tumino N, Bilotta MT, Pinnetti C, Ammassari A, Antinori A, Turchi F, Agrati C, Casetti R, Bordoni V, Cimini E, Abbate I, Capobianchi MR, Martini F, Sacchi A. Granulocytic Myeloid-Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. J Acquir Immune Defic Syndr 2017;74:575-82. [PMID: 28060224 DOI: 10.1097/QAI.0000000000001283] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
21 Zhou J, Nefedova Y, Lei A, Gabrilovich D. Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol 2018;35:19-28. [PMID: 29254756 DOI: 10.1016/j.smim.2017.12.004] [Cited by in Crossref: 111] [Cited by in F6Publishing: 105] [Article Influence: 22.2] [Reference Citation Analysis]
22 Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Myeloid-Derived Suppressor Cells in Bacterial Infections. Front Cell Infect Microbiol 2016;6:37. [PMID: 27066459 DOI: 10.3389/fcimb.2016.00037] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 9.2] [Reference Citation Analysis]
23 Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017;8:1755. [PMID: 29312298 DOI: 10.3389/fimmu.2017.01755] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
24 Namdev P, Patel S, Sparling B, Garg A. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium tuberculosis. Front Immunol 2021;12:647019. [PMID: 33995365 DOI: 10.3389/fimmu.2021.647019] [Reference Citation Analysis]
25 Goletti D, Lindestam Arlehamn CS, Scriba TJ, Anthony R, Cirillo DM, Alonzi T, Denkinger CM, Cobelens F. Can we predict tuberculosis cure? What tools are available? Eur Respir J 2018;52:1801089. [PMID: 30361242 DOI: 10.1183/13993003.01089-2018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 8.8] [Reference Citation Analysis]
26 Liu J, Toy R, Vantucci C, Pradhan P, Zhang Z, Kuo KM, Kubelick KP, Huo D, Wen J, Kim J, Lyu Z, Dhal S, Atalis A, Ghosh-Choudhary SK, Devereaux EJ, Gumbart JC, Xia Y, Emelianov SY, Willett NJ, Roy K. Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells. Nano Lett 2021;21:875-86. [PMID: 33395313 DOI: 10.1021/acs.nanolett.0c04833] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Sacchi A, Grassi G, Bordoni V, Lorenzini P, Cimini E, Casetti R, Tartaglia E, Marchioni L, Petrosillo N, Palmieri F, D'Offizi G, Notari S, Tempestilli M, Capobianchi MR, Nicastri E, Maeurer M, Zumla A, Locatelli F, Antinori A, Ippolito G, Agrati C. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death Dis 2020;11:921. [PMID: 33110074 DOI: 10.1038/s41419-020-03125-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 9.5] [Reference Citation Analysis]
28 Seman BG, Robinson CM. The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease. Pathogens 2021;10:1091. [PMID: 34578124 DOI: 10.3390/pathogens10091091] [Reference Citation Analysis]
29 Jøntvedt Jørgensen M, Jenum S, Tonby K, Mortensen R, Walzl G, Du Plessis N, Dyrhol-Riise AM. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. J Leukoc Biol 2021;110:177-86. [PMID: 33155730 DOI: 10.1002/JLB.4A0720-409RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
30 Dorhoi A, Glaría E, Garcia-Tellez T, Nieuwenhuizen NE, Zelinskyy G, Favier B, Singh A, Ehrchen J, Gujer C, Münz C, Saraiva M, Sohrabi Y, Sousa AE, Delputte P, Müller-Trutwin M, Valledor AF. MDSCs in infectious diseases: regulation, roles, and readjustment. Cancer Immunol Immunother 2019;68:673-85. [PMID: 30569204 DOI: 10.1007/s00262-018-2277-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
31 Grassi G, Vanini V, De Santis F, Romagnoli A, Aiello A, Casetti R, Cimini E, Bordoni V, Notari S, Cuzzi G, Mosti S, Gualano G, Palmieri F, Fraziano M, Goletti D, Agrati C, Sacchi A. PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Front Immunol 2021;12:594376. [PMID: 33981297 DOI: 10.3389/fimmu.2021.594376] [Reference Citation Analysis]
32 Agrawal N, Streata I, Pei G, Weiner J, Kotze L, Bandermann S, Lozza L, Walzl G, du Plessis N, Ioana M, Kaufmann SHE, Dorhoi A. Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Front Immunol 2018;9:2417. [PMID: 30405617 DOI: 10.3389/fimmu.2018.02417] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
33 Kotzé LA, Young C, Leukes VN, John V, Fang Z, Walzl G, Lutz MB, du Plessis N. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine 2020;53:102670. [PMID: 32113158 DOI: 10.1016/j.ebiom.2020.102670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
34 Ben-Meir K, Twaik N, Baniyash M. Plasticity and biological diversity of myeloid derived suppressor cells. Curr Opin Immunol 2018;51:154-61. [PMID: 29614426 DOI: 10.1016/j.coi.2018.03.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
35 Agrawal S, Parkash O, Palaniappan AN, Bhatia AK, Kumar S, Chauhan DS, Madhan Kumar M. Efficacy of T Regulatory Cells, Th17 Cells and the Associated Markers in Monitoring Tuberculosis Treatment Response. Front Immunol 2018;9:157. [PMID: 29472922 DOI: 10.3389/fimmu.2018.00157] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
36 Borkute RR, Woelke S, Pei G, Dorhoi A. Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021;22:4801. [PMID: 33946542 DOI: 10.3390/ijms22094801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kotze LA, Leukes VN, Fang Z, Lutz MB, Fitzgerald BL, Belisle J, Loxton AG, Walzl G, du Plessis N. Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cell Immunol 2021;369:104426. [PMID: 34469846 DOI: 10.1016/j.cellimm.2021.104426] [Reference Citation Analysis]
38 Singh B, Singh DK, Ganatra SR, Escobedo RA, Khader S, Schlesinger LS, Kaushal D, Mehra S. Myeloid-Derived Suppressor Cells Mediate T Cell Dysfunction in Nonhuman Primate TB Granulomas. mBio 2021;12:e0318921. [PMID: 34903057 DOI: 10.1128/mbio.03189-21] [Reference Citation Analysis]
39 John V, Kotze LA, Ribechini E, Walzl G, Du Plessis N, Lutz MB. Caveolin-1 Controls Vesicular TLR2 Expression, p38 Signaling and T Cell Suppression in BCG Infected Murine Monocytic Myeloid-Derived Suppressor Cells. Front Immunol 2019;10:2826. [PMID: 31849990 DOI: 10.3389/fimmu.2019.02826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
40 Lyadova IV. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way? Mediators Inflamm 2017;2017:8619307. [PMID: 28626346 DOI: 10.1155/2017/8619307] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
41 Leukes V, Walzl G, du Plessis N. Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis. Front Immunol 2020;11:451. [PMID: 32269568 DOI: 10.3389/fimmu.2020.00451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
42 Leukes VN, Dorhoi A, Malherbe ST, Maasdorp E, Khoury J, McAnda S, Walzl G, du Plessis N. Targeting of myeloid-derived suppressor cells by all-trans retinoic acid as host-directed therapy for human tuberculosis. Cell Immunol 2021;364:104359. [PMID: 33865151 DOI: 10.1016/j.cellimm.2021.104359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, Mfinanga S, Kapata N, Mwaba P, McHugh TD, Ippolito G, Migliori GB, Maeurer MJ, Zumla A. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis 2018;18:e183-98. [PMID: 29580819 DOI: 10.1016/S1473-3099(18)30110-5] [Cited by in Crossref: 144] [Cited by in F6Publishing: 80] [Article Influence: 36.0] [Reference Citation Analysis]
44 De Zuani M, Hortová-Kohoutková M, Andrejčinová I, Tomášková V, Šrámek V, Helán M, Frič J. Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data. Eur J Immunol 2021;51:1785-91. [PMID: 33788255 DOI: 10.1002/eji.202049141] [Reference Citation Analysis]
45 Dorhoi A, Kotzé LA, Berzofsky JA, Sui Y, Gabrilovich DI, Garg A, Hafner R, Khader SA, Schaible UE, Kaufmann SH, Walzl G, Lutz MB, Mahon RN, Ostrand-Rosenberg S, Bishai W, du Plessis N. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J Clin Invest 2020;130:2789-99. [PMID: 32420917 DOI: 10.1172/JCI136288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]