BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dahlén E, Veitonmäki N, Norlén P. Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 2018;6:3-17. [PMID: 29998217 DOI: 10.1177/2515135518763280] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 23.8] [Reference Citation Analysis]
Number Citing Articles
1 George AS, Fernandez CJ, Eapen D, Pappachan JM. Organ-specific Adverse Events of Immune Checkpoint Inhibitor Therapy, with Special Reference to Endocrinopathies. touchREV Endocrinol 2021;17:21-32. [PMID: 35118443 DOI: 10.17925/EE.2021.17.1.21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021;13:4787. [PMID: 34638271 DOI: 10.3390/cancers13194787] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2021;51:280-91. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
4 Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, Le Tourneau C, Subbiah V, Tsai F, Kao S, Cassier PA, Khasraw M, Kindler HL, Fang H, Fan F, Allaire K, Patel M, Ye S, Chao DT, Henner WR, Hayflick JS, McDevitt MA, Fong L. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J Immunother Cancer 2021;9:e002015. [PMID: 33608377 DOI: 10.1136/jitc-2020-002015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol 2020;64:1-12. [PMID: 31181267 DOI: 10.1016/j.semcancer.2019.06.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
6 Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D'Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021;11:14397. [PMID: 34257348 DOI: 10.1038/s41598-021-93842-0] [Reference Citation Analysis]
7 Huang L, Shah K, Barat B, Lam CK, Gorlatov S, Ciccarone V, Tamura J, Moore PA, Diedrich G. Multispecific, Multivalent Antibody-Based Molecules Engineered on the DART® and TRIDENTTM Platforms. Curr Protoc Immunol 2020;129:e95. [PMID: 32294319 DOI: 10.1002/cpim.95] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Ahn S, Leblay N, Neri P. Understanding the Mechanisms of Resistance to T Cell-based Immunotherapies to Develop More Favorable Strategies in Multiple Myeloma. Hemasphere 2021;5:e575. [PMID: 34095759 DOI: 10.1097/HS9.0000000000000575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gupta VR, Root A, Fisher T, Norberg R, David J, Clark T, Cohen J, May C, Giddabasappa A. Molecular imaging reveals biodistribution of P-cadherin LP-DART bispecific and trafficking of adoptively transferred T cells in mouse xenograft model. Oncotarget 2020;11:1344-57. [PMID: 32341754 DOI: 10.18632/oncotarget.27544] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bruins JJ, van de Wouw C, Wagner K, Bartels L, Albada B, van Delft FL. Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS Omega 2019;4:11801-7. [PMID: 31460288 DOI: 10.1021/acsomega.9b01727] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
11 Chen S, Li L, Zhang F, Wang Y, Hu Y, Zhao L. Immunoglobulin Gamma-Like Therapeutic Bispecific Antibody Formats for Tumor Therapy. J Immunol Res 2019;2019:4516041. [PMID: 30886871 DOI: 10.1155/2019/4516041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Einsele H, Rasche L, Topp MS, Martin Kortüm K, Duell J. The use of bispecific antibodies to optimize the outcome of patients with acute leukemia, lymphoma and multiple myeloma after SCT. Bone Marrow Transplant 2019;54:721-6. [PMID: 31431702 DOI: 10.1038/s41409-019-0596-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
13 Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2021;12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Reference Citation Analysis]
14 Chen Y, Nagarajan C, Tan MS, Martinelli G, Cerchione C. BCMA-targeting approaches for treatment of multiple myeloma. Panminerva Med 2021;63:28-36. [PMID: 32955181 DOI: 10.23736/S0031-0808.20.04121-X] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology. Clin Pharmacol Ther 2020;108:528-41. [PMID: 32579234 DOI: 10.1002/cpt.1961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhang J, Yi J, Zhou P. Development of bispecific antibodies in China: overview and prospects. Antib Ther 2020;3:126-45. [PMID: 33928227 DOI: 10.1093/abt/tbaa011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Marra A, Curigliano G. T-cell bispecific antibodies to bypass MHC class I loss in breast cancer. Ann Oncol 2019;30:877-9. [PMID: 30938431 DOI: 10.1093/annonc/mdz115] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022. [PMID: 35314852 DOI: 10.1038/s41573-022-00413-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Quijano-Rubio A, Ulge UY, Walkey CD, Silva DA. The advent of de novo proteins for cancer immunotherapy. Curr Opin Chem Biol 2020;56:119-28. [PMID: 32371023 DOI: 10.1016/j.cbpa.2020.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9:E561. [PMID: 32121014 DOI: 10.3390/cells9030561] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 35.5] [Reference Citation Analysis]
21 Perez-Santos M. Bispecific anti-PD-1/CTLA-4 antibody for advanced solid tumors. Pharm Pat Anal 2020;9:149-54. [PMID: 32960139 DOI: 10.4155/ppa-2020-0017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Mock J, Stringhini M, Villa A, Weller M, Weiss T, Neri D. An engineered 4-1BBL fusion protein with "activity on demand". Proc Natl Acad Sci U S A 2020;117:31780-8. [PMID: 33239441 DOI: 10.1073/pnas.2013615117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Bogen JP, Hinz SC, Grzeschik J, Ebenig A, Krah S, Zielonka S, Kolmar H. Dual Function pH Responsive Bispecific Antibodies for Tumor Targeting and Antigen Depletion in Plasma. Front Immunol 2019;10:1892. [PMID: 31447859 DOI: 10.3389/fimmu.2019.01892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
24 Chun BM, Page DB, Mcarthur HL. Combination Immunotherapy Strategies in Breast Cancer. Curr Breast Cancer Rep 2019;11:228-40. [DOI: 10.1007/s12609-019-00333-3] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Jin J, Wang R, Yang J, Hu H, Wang D, Cai L, Fang Z, Dong S, Hu S, Wang Y, Liu B. BiTEs expressed by an oncolytic herpes simplex virus type 2 can transform heterologous T cells into uniform tumor killer cells. Hum Gene Ther 2022. [PMID: 35272497 DOI: 10.1089/hum.2021.277] [Reference Citation Analysis]
26 Ribera JM, Genescà E, Ribera J. Bispecific T-cell engaging antibodies in B-cell precursor acute lymphoblastic leukemias: focus on blinatumomab. Ther Adv Hematol 2020;11:2040620720919632. [PMID: 32523659 DOI: 10.1177/2040620720919632] [Reference Citation Analysis]
27 Aspeslagh S, Chabanon RM, Champiat S, Postel-vinay S. Understanding genetic determinants of resistance to immune checkpoint blockers. Seminars in Cancer Biology 2020;65:123-39. [DOI: 10.1016/j.semcancer.2019.12.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Expeditious Generation of Biparatopic Common Light Chain Antibodies via Chicken Immunization and Yeast Display Screening. Front Immunol 2020;11:606878. [PMID: 33424853 DOI: 10.3389/fimmu.2020.606878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ranallo S, Porchetta A, Ricci F. DNA-Based Scaffolds for Sensing Applications. Anal Chem 2019;91:44-59. [PMID: 30501170 DOI: 10.1021/acs.analchem.8b05009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 10.5] [Reference Citation Analysis]
30 Friedlaender A, Addeo A, Banna G. New emerging targets in cancer immunotherapy: the role of TIM3. ESMO Open 2019;4:e000497. [PMID: 31275616 DOI: 10.1136/esmoopen-2019-000497] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
31 George AS, Fernandez CJ, Eapen D, Pappachan JM; Department of Medical Oncology, Lakeshore Hospital, Cochin, Kerala, India, Department of Endocrinology, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston, UK, Department of Endocrinology, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston, UK, Department of Endocrinology & Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, UK, Manchester Metropolitan University, Manchester, UK, The University of Manchester, Manchester, UK. Organ-specific Adverse Events of Immune Checkpoint Inhibitor Therapy, with Special Reference to Endocrinopathies. European Endocrinology 2021;1:21. [DOI: 10.17925/ee.2021.1.1.21] [Reference Citation Analysis]
32 Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling Therapeutic Efficacy from Immune-Related Adverse Events in Immune Checkpoint Blockade. iScience 2020;23:101580. [PMID: 33083746 DOI: 10.1016/j.isci.2020.101580] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
33 Minson A, Tam C, Dickinson M, Seymour JF. Targeted Agents in the Treatment of Indolent B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022;14:1276. [PMID: 35267584 DOI: 10.3390/cancers14051276] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Lopes R, Ferreira BV, Caetano J, Barahona F, Carneiro EA, João C. Boosting Immunity against Multiple Myeloma. Cancers (Basel) 2021;13:1221. [PMID: 33799565 DOI: 10.3390/cancers13061221] [Reference Citation Analysis]
35 Boland AJ, O'Kane AA, Buick R, Longley DB, Scott CJ. Antibody therapy in pancreatic cancer: mAb-ye we're onto something? Biochim Biophys Acta Rev Cancer 2021;1876:188557. [PMID: 33945846 DOI: 10.1016/j.bbcan.2021.188557] [Reference Citation Analysis]
36 Abu Khalaf S, Dandachi D, Granwehr BP, Rodriguez-Barradas MC. Cancer immunotherapy in adult patients with HIV. J Investig Med 2022:jim-2021-002205. [PMID: 35086858 DOI: 10.1136/jim-2021-002205] [Reference Citation Analysis]
37 Groeneveldt C, Kinderman P, van den Wollenberg DJM, van den Oever RL, Middelburg J, Mustafa DAM, Hoeben RC, van der Burg SH, van Hall T, van Montfoort N. Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. J Immunother Cancer 2020;8:e001191. [PMID: 33082167 DOI: 10.1136/jitc-2020-001191] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
38 Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am Soc Clin Oncol Educ Book 2019;39:147-64. [PMID: 31099674 DOI: 10.1200/EDBK_240837] [Cited by in Crossref: 187] [Cited by in F6Publishing: 129] [Article Influence: 62.3] [Reference Citation Analysis]
39 Mihályová J, Hradská K, Jelínek T, Motais B, Celichowski P, Hájek R. Promising Immunotherapeutic Modalities for B-Cell Lymphoproliferative Disorders. Int J Mol Sci 2021;22:11470. [PMID: 34768899 DOI: 10.3390/ijms222111470] [Reference Citation Analysis]
40 Young A, Quandt Z, Bluestone JA. The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol Res 2018;6:1445-52. [PMID: 30510057 DOI: 10.1158/2326-6066.CIR-18-0487] [Cited by in Crossref: 58] [Cited by in F6Publishing: 38] [Article Influence: 19.3] [Reference Citation Analysis]
41 Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021;13:5999. [PMID: 34885109 DOI: 10.3390/cancers13235999] [Reference Citation Analysis]
42 Pestana RC, Roszik J, Groisberg R, Sen S, Van Tine BA, Conley AP, Subbiah V. Discovery of targeted expression data for novel antibody-based and chimeric antigen receptor-based therapeutics in soft tissue sarcomas using RNA-sequencing: clinical implications. Curr Probl Cancer 2021;45:100794. [PMID: 34656365 DOI: 10.1016/j.currproblcancer.2021.100794] [Reference Citation Analysis]
43 Solinas C, De Silva P, Bron D, Willard-Gallo K, Sangiolo D. Significance of TIM3 expression in cancer: From biology to the clinic. Semin Oncol 2019;46:372-9. [PMID: 31733828 DOI: 10.1053/j.seminoncol.2019.08.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
44 Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol 2019;94:S3-9. [PMID: 30680780 DOI: 10.1002/ajh.25418] [Cited by in Crossref: 176] [Cited by in F6Publishing: 142] [Article Influence: 58.7] [Reference Citation Analysis]
45 Gökbuget N. Clinical Experience with Bispecific T Cell Engagers. Recent Results Cancer Res 2020;214:71-91. [PMID: 31473849 DOI: 10.1007/978-3-030-23765-3_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Barilà G, Rizzi R, Zambello R, Musto P. Drug Conjugated and Bispecific Antibodies for Multiple Myeloma: Improving Immunotherapies off the Shelf. Pharmaceuticals (Basel) 2021;14:40. [PMID: 33430210 DOI: 10.3390/ph14010040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Dougall WC, Roman Aguilera A, Smyth MJ. Dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity. Clin Transl Immunology 2019;8:e01081. [PMID: 31572609 DOI: 10.1002/cti2.1081] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
48 Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020;10:568059. [PMID: 33194652 DOI: 10.3389/fonc.2020.568059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
49 Wohlrab J. [Basics of the pharmacology of biopharmaceuticals]. Hautarzt 2019;70:926-33. [PMID: 31712972 DOI: 10.1007/s00105-019-04502-4] [Reference Citation Analysis]
50 Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020;17:527-40. [PMID: 32398706 DOI: 10.1038/s41571-020-0363-5] [Cited by in Crossref: 82] [Cited by in F6Publishing: 97] [Article Influence: 41.0] [Reference Citation Analysis]
51 Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol 2021. [PMID: 34472091 DOI: 10.1111/bjh.17805] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Orrù V, Steri M, Cucca F, Fiorillo E. Application of Genetic Studies to Flow Cytometry Data and Its Impact on Therapeutic Intervention for Autoimmune Disease. Front Immunol 2021;12:714461. [PMID: 34531863 DOI: 10.3389/fimmu.2021.714461] [Reference Citation Analysis]
53 Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2020;16:377-87. [PMID: 31403344 DOI: 10.1080/21645515.2019.1653744] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
54 Zhang Y, Wang N, Ding M, Yang Y, Wang Z, Huang L, Zhu W, Mellor AL, Hou X, Zhou C, Yan R, Wang W, Wu S. CD40 Accelerates the Antigen-Specific Stem-Like Memory CD8+ T Cells Formation and Human Papilloma Virus (HPV)-Positive Tumor Eradication. Front Immunol 2020;11:1012. [PMID: 32536922 DOI: 10.3389/fimmu.2020.01012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Li L, Huang H, Zhu M, Wu J. Identification of Hub Genes and Pathways of Triple Negative Breast Cancer by Expression Profiles Analysis. Cancer Manag Res 2021;13:2095-104. [PMID: 33688252 DOI: 10.2147/CMAR.S295951] [Reference Citation Analysis]
56 Sammons S, Van Swearingen AED, Anders CK. The Promise of Immunotherapy for Breast Cancer Brain Metastases. Curr Breast Cancer Rep 2019;11:241-7. [DOI: 10.1007/s12609-019-00335-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Martín-Broto J, Moura DS, Van Tine BA. Facts and Hopes in Immunotherapy of Soft-Tissue Sarcomas. Clin Cancer Res 2020;26:5801-8. [PMID: 32601077 DOI: 10.1158/1078-0432.CCR-19-3335] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
58 Ma B, Akosman B, Kamle S, Lee CM, He CH, Koo JS, Lee CG, Elias JA. CHI3L1 regulates PD-L1 and anti-CHI3L1-PD-1 antibody elicits synergistic antitumor responses. J Clin Invest 2021;131:e137750. [PMID: 34720089 DOI: 10.1172/JCI137750] [Reference Citation Analysis]
59 Ovacik AM, Li J, Lemper M, Danilenko D, Stagg N, Mathieu M, Ellerman D, Gupta V, Kalia N, Nguy T, Plaks V, David Johnson C, Wang W, Brumm J, Fine B, Junttila T, Lin K, Carter PJ, Prabhu S, Spiess C, Kamath AV. Single cell-produced and in vitro-assembled anti-FcRH5/CD3 T-cell dependent bispecific antibodies have similar in vitro and in vivo properties. MAbs 2019;11:422-33. [PMID: 30550367 DOI: 10.1080/19420862.2018.1551676] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
60 Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting Negative and Positive Immune Checkpoints with Monoclonal Antibodies in Therapy of Cancer. Cancers (Basel) 2019;11:E1756. [PMID: 31717326 DOI: 10.3390/cancers11111756] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 14.3] [Reference Citation Analysis]
61 Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019;11:899-918. [PMID: 31172847 DOI: 10.1080/19420862.2019.1616506] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
62 Seifert O, Rau A, Beha N, Richter F, Kontermann RE. Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules. MAbs 2019;11:919-29. [PMID: 30951400 DOI: 10.1080/19420862.2019.1603024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
63 Li H, Li Y, Wang C, Wang S, Ho M. Highlights of 2019 Protein Engineering Summit (PEGS) in Boston, USA: Advancing Antibody-Based Cancer Therapies to the Clinic. Antib Ther 2019;2:79-87. [PMID: 31844838 DOI: 10.1093/abt/tbz010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
64 Kong X, Lu P, Liu C, Guo Y, Yang Y, Peng Y, Wang F, Bo Z, Dou X, Shi H, Meng J. A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Mol Med Rep 2021;23:362. [PMID: 33760188 DOI: 10.3892/mmr.2021.12001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Nguyen TT, Nguyen TTD, Ta QTH, Vo VG. Advances in non and minimal-invasive transcutaneous delivery of immunotherapy for cancer treatment. Biomed Pharmacother 2020;131:110753. [PMID: 33152919 DOI: 10.1016/j.biopha.2020.110753] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Christian EA, Hussmann GP, Babu M, Prophet M, Mazor Y, Chen W, Grigoriadou C, Lin S. A single homogeneous assay for simultaneous measurement of bispecific antibody target binding. J Immunol Methods 2021;496:113099. [PMID: 34224737 DOI: 10.1016/j.jim.2021.113099] [Reference Citation Analysis]
67 Wilky BA. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol Rev 2019;290:6-23. [PMID: 31355494 DOI: 10.1111/imr.12766] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 33.0] [Reference Citation Analysis]
68 Zhu G, Foletti D, Liu X, Ding S, Melton Witt J, Hasa-Moreno A, Rickert M, Holz C, Aschenbrenner L, Yang AH, Kraynov E, Evering W, Obert L, Lee C, Sai T, Mistry T, Lindquist KC, Van Blarcom T, Strop P, Chaparro-Riggers J, Liu SH. Targeting CLDN18.2 by CD3 Bispecific and ADC Modalities for the Treatments of Gastric and Pancreatic Cancer. Sci Rep 2019;9:8420. [PMID: 31182754 DOI: 10.1038/s41598-019-44874-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
69 Guo G, Han J, Wang Y, Li Y. A potential downstream platform approach for WuXiBody-based IgG-like bispecific antibodies. Protein Expression and Purification 2020;173:105647. [DOI: 10.1016/j.pep.2020.105647] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Ghalamfarsa F, Khatami SH, Vakili O, Taheri-Anganeh M, Tajbakhsh A, Savardashtaki A, Fazli Y, Uonaki LR, Shabaninejad Z, Movahedpour A, Ghalamfarsa G. Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy 2021;13:1355-67. [PMID: 34641708 DOI: 10.2217/imt-2021-0107] [Reference Citation Analysis]
71 Swope N, Chung WK, Cao M, Motabar D, Liu D, Ahuja S, Handlogten M. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation. Biotechnology and Bioengineering 2020;117:1063-71. [DOI: 10.1002/bit.27264] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
72 Schlake T, Thran M, Fiedler K, Heidenreich R, Petsch B, Fotin-Mleczek M. mRNA: A Novel Avenue to Antibody Therapy? Mol Ther 2019;27:773-84. [PMID: 30885573 DOI: 10.1016/j.ymthe.2019.03.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
73 Janelle V, Delisle JS. T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021;13:598. [PMID: 33546277 DOI: 10.3390/cancers13040598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Luo W, Wang Y, Zhang T. Win or loss? Combination therapy does improve the oncolytic virus therapy to pancreatic cancer. Cancer Cell Int 2022;22:160. [PMID: 35443724 DOI: 10.1186/s12935-022-02583-1] [Reference Citation Analysis]
75 Pandey MS, Wang C, Umlauf S, Lin S. Simultaneous Inhibition of PD-1 and Stimulation of CD40 Signaling Pathways by Anti-PD-L1/CD40L Bispecific Fusion Protein Synergistically Activate Target and Effector Cells. Int J Mol Sci 2021;22:11302. [PMID: 34768776 DOI: 10.3390/ijms222111302] [Reference Citation Analysis]
76 Lim SI. Fine-tuning bispecific therapeutics. Pharmacol Ther 2020;212:107582. [PMID: 32450189 DOI: 10.1016/j.pharmthera.2020.107582] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021;13:287. [PMID: 33466732 DOI: 10.3390/cancers13020287] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
78 Jang S, Song J, Kim N, Bak J, Jung K, Park YW, Park BC, Kim HM. Development of an antibody-like T-cell engager based on VH-VL heterodimer formation and its application in cancer therapy. Biomaterials 2021;271:120760. [PMID: 33774526 DOI: 10.1016/j.biomaterials.2021.120760] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 van Faassen H, Jo DH, Ryan S, Lowden MJ, Raphael S, MacKenzie CR, Lee SH, Hussack G, Henry KA. Incorporation of a Novel CD16-Specific Single-Domain Antibody into Multispecific Natural Killer Cell Engagers With Potent ADCC. Mol Pharm 2021;18:2375-84. [PMID: 33999642 DOI: 10.1021/acs.molpharmaceut.1c00208] [Reference Citation Analysis]
80 Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020;21:E5192. [PMID: 32707894 DOI: 10.3390/ijms21155192] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
81 Jiang H, Xu W, Liu R, Gupta B, Kilgore B, Du Z, Yang X. Characterization of Bispecific Antibody Production in Cell Cultures by Unique Mixed Mode Size Exclusion Chromatography. Anal Chem 2020;92:9312-21. [DOI: 10.1021/acs.analchem.0c01641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
82 Liu AW, Wei AZ, Maniar AB, Carvajal RD. Tebentafusp in Advanced Uveal Melanoma: Proof of Principal for the Efficacy of T-Cell Receptor Therapeutics and Bispecifics in Solid Tumors. Expert Opinion on Biological Therapy. [DOI: 10.1080/14712598.2022.2031970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2019;154:102-17. [PMID: 30395966 DOI: 10.1016/j.ymeth.2018.10.026] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 17.5] [Reference Citation Analysis]
84 García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Reference Citation Analysis]
85 Hemmi S, Asano R, Kimura K, Umetsu M, Nakanishi T, Kumagai I, Makabe K. Construction of a circularly connected VHH bispecific antibody (cyclobody) for the desirable positioning of antigen-binding sites. Biochem Biophys Res Commun 2020;523:72-7. [PMID: 31831177 DOI: 10.1016/j.bbrc.2019.12.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
86 Caraccio C, Krishna S, Phillips DJ, Schürch CM. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front Immunol 2020;11:501. [PMID: 32391000 DOI: 10.3389/fimmu.2020.00501] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
87 Kreileder M, Barrett I, Bendtsen C, Brennan D, Kolch W. Signaling Dynamics Regulating Crosstalks between T-Cell Activation and Immune Checkpoints. Trends Cell Biol 2021;31:224-35. [PMID: 33388215 DOI: 10.1016/j.tcb.2020.12.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
88 Wang X, Sandberg ML, Martin AD, Negri KR, Gabrelow GB, Nampe DP, Wu ML, McElvain ME, Toledo Warshaviak D, Lee WH, Oh J, Daris ME, Chai F, Yao C, Furney J, Pigott C, Kamb A, Xu H. Potent, Selective CARs as Potential T-Cell Therapeutics for HPV-positive Cancers. J Immunother 2021;44:292-306. [PMID: 34432728 DOI: 10.1097/CJI.0000000000000386] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020;118:104813. [PMID: 33144077 DOI: 10.1016/j.yrtph.2020.104813] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
90 Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. Adv Mater 2021;33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Leow CC, Low MSY. Targeted Therapies for Multiple Myeloma. J Pers Med 2021;11:334. [PMID: 33922567 DOI: 10.3390/jpm11050334] [Reference Citation Analysis]
92 Edd JF, Mishra A, Dubash TD, Herrera S, Mohammad R, Williams EK, Hong X, Mutlu BR, Walsh JR, Machado de Carvalho F, Aldikacti B, Nieman LT, Stott SL, Kapur R, Maheswaran S, Haber DA, Toner M. Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes.Lab Chip. 2020;20:558-567. [PMID: 31934715 DOI: 10.1039/c9lc01122f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
93 Ren D, Cheng H, Wang X, Vishnoi M, Teh BS, Rostomily R, Chang J, Wong ST, Zhao H. Emerging treatment strategies for breast cancer brain metastasis: from translational therapeutics to real-world experience. Ther Adv Med Oncol 2020;12:1758835920936151. [PMID: 32655700 DOI: 10.1177/1758835920936151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
94 Greiner J, Götz M, Hofmann S, Schrezenmeier H, Wiesneth M, Bullinger L, Döhner H, Schneider V. Specific T-cell immune responses against colony-forming cells including leukemic progenitor cells of AML patients were increased by immune checkpoint inhibition. Cancer Immunol Immunother 2020;69:629-40. [PMID: 32020256 DOI: 10.1007/s00262-020-02490-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
95 Minson A, Dickinson M. Glofitamab CD20-TCB bispecific antibody. Leuk Lymphoma 2021;:1-11. [PMID: 34263696 DOI: 10.1080/10428194.2021.1953016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Strassl I, Schreder M, Steiner N, Rudzki J, Agis H, Künz T, Müser N, Willenbacher W, Petzer A, Neumeister P, Krauth MT. The Agony of Choice-Where to Place the Wave of BCMA-Targeted Therapies in the Multiple Myeloma Treatment Puzzle in 2022 and Beyond. Cancers (Basel) 2021;13:4701. [PMID: 34572927 DOI: 10.3390/cancers13184701] [Reference Citation Analysis]
97 Husain B, Ellerman D. Expanding the Boundaries of Biotherapeutics with Bispecific Antibodies. BioDrugs 2018;32:441-64. [PMID: 30132211 DOI: 10.1007/s40259-018-0299-9] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 15.3] [Reference Citation Analysis]
98 Gu CL, Zhu HX, Deng L, Meng XQ, Li K, Xu W, Zhao L, Liu YQ, Zhu ZP, Huang HM. Bispecific antibody simultaneously targeting PD1 and HER2 inhibits tumor growth via direct tumor cell killing in combination with PD1/PDL1 blockade and HER2 inhibition. Acta Pharmacol Sin 2022;43:672-80. [PMID: 33990766 DOI: 10.1038/s41401-021-00683-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
99 Dimasi N, Fleming R, Wu H, Gao C. Molecular engineering strategies and methods for the expression and purification of IgG1-based bispecific bivalent antibodies. Methods 2019;154:77-86. [PMID: 30102989 DOI: 10.1016/j.ymeth.2018.08.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
100 Gombos A, Franzoi MA, Awada A. Investigational drugs in early stage clinical trials for the treatment of HER2+ breast cancer. Expert Opinion on Investigational Drugs 2019;28:617-27. [DOI: 10.1080/13543784.2019.1633306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
101 Passariello M, Yoshioka A, Takahashi K, Hashimoto SI, Rapuano Lembo R, Manna L, Nakamura K, De Lorenzo C. Novel Bi-Specific Immuno-Modulatory Tribodies Potentiate T Cell Activation and Increase Anti-Tumor Efficacy. Int J Mol Sci 2022;23:3466. [PMID: 35408827 DOI: 10.3390/ijms23073466] [Reference Citation Analysis]