BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017;9:250-61. [PMID: 28222444 DOI: 10.1159/000455857] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Rashid MI, Naz A, Ali A, Andleeb S. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics 2017;109:274-83. [PMID: 28487172 DOI: 10.1016/j.ygeno.2017.05.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 5.2] [Reference Citation Analysis]
2 Li Z, Chang P, Xu J, Tan C, Wang X, Bei W, Li J. A Streptococcus suis Live Vaccine Suppresses Streptococcal Toxic Shock-Like Syndrome and Provides Sequence Type-Independent Protection. J Infect Dis 2019;219:448-58. [PMID: 30165645 DOI: 10.1093/infdis/jiy512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Schmit T, Ghosh S, Mathur RK, Barnhardt T, Ambigapathy G, Wu M, Combs C, Khan MN. IL-6 Deficiency Exacerbates Allergic Asthma and Abrogates the Protective Effect of Allergic Inflammation against Streptococcus pneumoniae Pathogenesis. J Immunol 2020;205:469-79. [PMID: 32540994 DOI: 10.4049/jimmunol.1900755] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
4 Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019;10:E183. [PMID: 30813645 DOI: 10.3390/genes10030183] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
5 Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines (Basel) 2022;10:1100. [PMID: 35891262 DOI: 10.3390/vaccines10071100] [Reference Citation Analysis]
6 Peñaloza HF, Olonisakin TF, Bain WG, Qu Y, van der Geest R, Zupetic J, Hulver M, Xiong Z, Newstead MW, Zou C, Alder JK, Ybe JA, Standiford TJ, Lee JS. Thrombospondin-1 Restricts Interleukin-36γ-Mediated Neutrophilic Inflammation during Pseudomonas aeruginosa Pulmonary Infection. mBio 2021;12:e03336-20. [PMID: 33824208 DOI: 10.1128/mBio.03336-20] [Reference Citation Analysis]
7 Curutiu C, Iordache F, Lazar V, Pisoschi AM, Pop A, Chifiriuc MC, Hoban AM. Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells. Beilstein J Org Chem 2018;14:2580-8. [PMID: 30410619 DOI: 10.3762/bjoc.14.235] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
8 Maurice NM, Bedi B, Yuan Z, Lin K, Goldberg JB, Hart CM, Bailey KL, Sadikot RT. The Effect of PGC-1alpha-SIRT3 Pathway Activation on Pseudomonas aeruginosa Infection. Pathogens 2022;11:116. [DOI: 10.3390/pathogens11020116] [Reference Citation Analysis]
9 Weaver AJ Jr, Brandenburg KS, Smith BW, Leung KP. Comparative Analysis of the Host Response in a Rat Model of Deep-Partial and Full-Thickness Burn Wounds With Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2019;9:466. [PMID: 31998665 DOI: 10.3389/fcimb.2019.00466] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Ferreira BL, Ramirez-Moral I, Otto NA, Salomão R, de Vos AF, van der Poll T. The PPAR-γ agonist pioglitazone exerts proinflammatory effects in bronchial epithelial cells during acute Pseudomonas aeruginosa pneumonia. Clin Exp Immunol 2022;207:370-7. [PMID: 35553637 DOI: 10.1093/cei/uxab036] [Reference Citation Analysis]
11 Wu Z, Tian Y, Alam HB, Li P, Duan X, Williams AM, Liu B, Ma J, Li Y. Peptidylarginine Deiminases 2 Mediates Caspase-1-Associated Lethality in Pseudomonas aeruginosa Pneumonia-Induced Sepsis. J Infect Dis 2021;223:1093-102. [PMID: 32729925 DOI: 10.1093/infdis/jiaa475] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Prince A. Participation of Host Determinants in the Pathogenesis of Pneumonia. J Innate Immun 2017;9:229-31. [PMID: 28259885 DOI: 10.1159/000460276] [Reference Citation Analysis]
13 Bouquet J, Tabor DE, Silver JS, Nair V, Tovchigrechko A, Griffin MP, Esser MT, Sellman BR, Jin H. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res 2020;21:77. [PMID: 32228581 DOI: 10.1186/s12931-020-01340-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
14 Mohamed MF, Gupta K, Goldufsky JW, Roy R, Callaghan LT, Wetzel DM, Kuzel TM, Reiser J, Shafikhani SH. CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun 2022;13:1295. [PMID: 35277504 DOI: 10.1038/s41467-022-28967-5] [Reference Citation Analysis]
15 Hisert KB, Birkland TP, Schoenfelt KQ, Long ME, Grogan B, Carter S, Liles WC, McKone EF, Becker L, Manicone AM, Gharib SA. CFTR Modulator Therapy Enhances Peripheral Blood Monocyte Contributions to Immune Responses in People With Cystic Fibrosis. Front Pharmacol 2020;11:1219. [PMID: 33013356 DOI: 10.3389/fphar.2020.01219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
16 Grunau A, Escher U, Kühl AA, Bereswill S, Heimesaat MM. Toll-like receptor-4 differentially mediates intestinal and extra-intestinal immune responses upon multi-drug resistant Pseudomonas aeruginosa association of IL10-/- mice with chronic colitis. Gut Pathog 2017;9:61. [PMID: 29151895 DOI: 10.1186/s13099-017-0211-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
17 Kim B, Yang Q, Chan LW, Bhatia SN, Ruoslahti E, Sailor MJ. Fusogenic porous silicon nanoparticles as a broad-spectrum immunotherapy against bacterial infections. Nanoscale Horiz 2021;6:330-40. [PMID: 33599221 DOI: 10.1039/d0nh00624f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022;7:199. [PMID: 35752612 DOI: 10.1038/s41392-022-01056-1] [Reference Citation Analysis]
19 Gu RX, Wei H, Wang Y, Liu BC, Zhou CL, Lin D, Liu KQ, Wei SN, Gong BF, Zhang GJ, Liu YT, Zhao XL, Gong XY, Li Y, Qiu SW, Mi YC, Wang JX. [Impact of duration of antibiotic therapy on the prognosis of patients with acute myeloid leukemia who had Gram-negative bloodstream infection in consolidation chemotherapy]. Zhonghua Xue Ye Xue Za Zhi 2018;39:471-5. [PMID: 30032562 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.006] [Reference Citation Analysis]
20 Migiyama Y, Sakata S, Iyama S, Tokunaga K, Saruwatari K, Tomita Y, Saeki S, Okamoto S, Ichiyasu H, Sakagami T. Airway Pseudomonas aeruginosa density in mechanically ventilated patients: clinical impact and relation to therapeutic efficacy of antibiotics. Crit Care 2021;25:59. [PMID: 33573691 DOI: 10.1186/s13054-021-03488-7] [Reference Citation Analysis]
21 Pandur E, Balatinácz A, Micalizzi G, Mondello L, Horváth A, Sipos K, Horváth G. Anti-inflammatory effect of lavender (Lavandula angustifolia Mill.) essential oil prepared during different plant phenophases on THP-1 macrophages. BMC Complement Med Ther 2021;21:287. [PMID: 34819075 DOI: 10.1186/s12906-021-03461-5] [Reference Citation Analysis]
22 Dereschuk K, Apostol L, Ranjan I, Chakladar J, Li WT, Rajasekaran M, Chang EY, Ongkeko WM. Identification of Lung and Blood Microbiota Implicated in COVID-19 Prognosis. Cells 2021;10:1452. [PMID: 34200572 DOI: 10.3390/cells10061452] [Reference Citation Analysis]
23 Huang C, Ogawa R. Role of Inflammasomes in Keloids and Hypertrophic Scars-Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis. Int J Mol Sci 2022;23:6820. [PMID: 35743263 DOI: 10.3390/ijms23126820] [Reference Citation Analysis]
24 Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021;15:682259. [PMID: 34220440 DOI: 10.3389/fnins.2021.682259] [Reference Citation Analysis]
25 Pang Z, Raudonis R, McCormick C, Cheng Z. Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infect Immun 2019;88:e00678-19. [PMID: 31611276 DOI: 10.1128/IAI.00678-19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
26 Millette G, Langlois JP, Brouillette E, Frost EH, Cantin AM, Malouin F. Despite Antagonism in vitro, Pseudomonas aeruginosa Enhances Staphylococcus aureus Colonization in a Murine Lung Infection Model. Front Microbiol 2019;10:2880. [PMID: 31921058 DOI: 10.3389/fmicb.2019.02880] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
27 Sen-Kilic E, Blackwood CB, Boehm DT, Witt WT, Malkowski AC, Bevere JR, Wong TY, Hall JM, Bradford SD, Varney ME, Damron FH, Barbier M. Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia. Front Immunol 2019;10:2497. [PMID: 31708925 DOI: 10.3389/fimmu.2019.02497] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
28 Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021;15:649-62. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Reference Citation Analysis]
29 Hennemann LC, LaFayette SL, Malet JK, Bortolotti P, Yang T, McKay GA, Houle D, Radzioch D, Rousseau S, Nguyen D. LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog 2021;17:e1009375. [PMID: 33690714 DOI: 10.1371/journal.ppat.1009375] [Reference Citation Analysis]
30 Neuhaus M, Munder A, Schipke J, Schmiedl A. Lung infection caused by Pseudomonas aeruginosa in a CD26/DPP4 deficient F344 rat model. Inflamm Res 2019;68:529-44. [PMID: 31089745 DOI: 10.1007/s00011-019-01236-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yeh JJ, Lin CL, Kao CH. Associations among chronic obstructive pulmonary disease with asthma, pneumonia, and corticosteroid use in the general population. PLoS One 2020;15:e0229484. [PMID: 32092112 DOI: 10.1371/journal.pone.0229484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 . Full Complement. J Innate Immun 2018;10:83-4. [PMID: 29510384 DOI: 10.1159/000487341] [Reference Citation Analysis]
33 Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021;116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018;82:e00033-18. [PMID: 30209071 DOI: 10.1128/MMBR.00033-18] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
35 Bouillot S, Pont S, Gallet B, Moriscot C, Deruelle V, Attrée I, Huber P. Inflammasome activation by Pseudomonas aeruginosa's ExlA pore-forming toxin is detrimental for the host. Cell Microbiol 2020;22:e13251. [PMID: 32779854 DOI: 10.1111/cmi.13251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Garge S, Azimi S, Diggle SP. A simple mung bean infection model for studying the virulence of Pseudomonas aeruginosa. Microbiology (Reading) 2018;164:764-8. [PMID: 29629857 DOI: 10.1099/mic.0.000659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020;11:819. [PMID: 32477341 DOI: 10.3389/fimmu.2020.00819] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Rhoades NS, Pinski A, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, Ibraim I, Messaoudi I. Acute SARS-CoV-2 infection is associated with an expansion of bacteria pathogens in the nose including Pseudomonas Aeruginosa. bioRxiv 2021:2021. [PMID: 34031657 DOI: 10.1101/2021.05.20.445008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Pandur E, Micalizzi G, Mondello L, Horváth A, Sipos K, Horváth G. Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants 2022;11:1330. [DOI: 10.3390/antiox11071330] [Reference Citation Analysis]
40 Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020;9:E2617. [PMID: 33291484 DOI: 10.3390/cells9122617] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]