BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mathis C, Poussin C, Weisensee D, Gebel S, Hengstermann A, Sewer A, Belcastro V, Xiang Y, Ansari S, Wagner S, Hoeng J, Peitsch MC. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 2013;304:L489-503. [PMID: 23355383 DOI: 10.1152/ajplung.00181.2012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Kuczaj AK, Nordlund M, Jayaraju S, Komen E, Krebs T, Peitsch MC, Hoeng J. Aerosol Flow in the Vitrocell 24/48 Exposure System: Flow Mixing and Aerosol Coalescence. Applied In Vitro Toxicology 2016;2:165-74. [DOI: 10.1089/aivt.2016.0009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Majeed S, Frentzel S, Wagner S, Kuehn D, Leroy P, Guy PA, Knorr A, Hoeng J, Peitsch MC. Characterization of the Vitrocell® 24/48 in vitro aerosol exposure system using mainstream cigarette smoke. Chem Cent J 2014;8:62. [PMID: 25411580 DOI: 10.1186/s13065-014-0062-3] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 6.9] [Reference Citation Analysis]
3 Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, Perdomo C, Kleerup E, Brooks D, O'Connor G, Dubinett S, Hayden P, Lenburg ME, Spira A. Molecular Impact of Electronic Cigarette Aerosol Exposure in Human Bronchial Epithelium. Toxicol Sci 2017;155:248-57. [PMID: 27701119 DOI: 10.1093/toxsci/kfw198] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
4 Behrsing H, Raabe H, Manuppello J, Bombick B, Curren R, Sullivan K, Sethi S, Phipps R, Tesfaigzi Y, Yan S, D'Ruiz C, Tarran R, Constant S, Phillips G, Gaça M, Hayden P, Cao X, Mathis C, Hoeng J, Braun A, Hill E. Assessment of in vitro COPD models for tobacco regulatory science: Workshop proceedings, conclusions and paths forward for in vitro model use. Altern Lab Anim 2016;44:129-66. [PMID: 27256455 DOI: 10.1177/026119291604400206] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
5 Muñoz JP, Carrillo-Beltrán D, Aedo-Aguilera V, Calaf GM, León O, Maldonado E, Tapia JC, Boccardo E, Ozbun MA, Aguayo F. Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Front Microbiol 2018;9:3022. [PMID: 30619121 DOI: 10.3389/fmicb.2018.03022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
6 Luettich K, Xiang Y, Iskandar A, Sewer A, Martin F, Talikka M, Vanscheeuwijck P, Berges A, Veljkovic E, Gonzalez-Suarez I, Schlage W, Hoeng J, Peitsch M. Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model. Interdiscip Toxicol 2014;7:73-84. [PMID: 26109882 DOI: 10.2478/intox-2014-0010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
7 Kuehn D, Majeed S, Guedj E, Dulize R, Baumer K, Iskandar A, Boue S, Martin F, Kostadinova R, Mathis C, Ivanov NV, Frentzel S, Hoeng J, Peitsch MC. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke. J Vis Exp 2015. [PMID: 25741927 DOI: 10.3791/52325] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
8 Andersson KM, Turkkila M, Erlandsson MC, Bossios A, Silfverswärd ST, Hu D, Ekerljung L, Malmhäll C, Weiner HL, Lundbäck B, Bokarewa MI. Survivin controls biogenesis of microRNA in smokers: A link to pathogenesis of rheumatoid arthritis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017;1863:663-73. [DOI: 10.1016/j.bbadis.2016.11.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
9 Gonzalez-suarez I, Martin F, Marescotti D, Guedj E, Acali S, Johne S, Dulize R, Baumer K, Peric D, Goedertier D, Frentzel S, Ivanov NV, Mathis C, Hoeng J, Peitsch MC. In Vitro Systems Toxicology Assessment of a Candidate Modified Risk Tobacco Product Shows Reduced Toxicity Compared to That of a Conventional Cigarette. Chem Res Toxicol 2016;29:3-18. [DOI: 10.1021/acs.chemrestox.5b00321] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.9] [Reference Citation Analysis]
10 Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep 2016;6:23984. [PMID: 27041137 DOI: 10.1038/srep23984] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 8.7] [Reference Citation Analysis]
11 Schlage WK, Iskandar AR, Kostadinova R, Xiang Y, Sewer A, Majeed S, Kuehn D, Frentzel S, Talikka M, Geertz M, Mathis C, Ivanov N, Hoeng J, Peitsch MC. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicol Mech Methods 2014;24:470-87. [PMID: 25046638 DOI: 10.3109/15376516.2014.943441] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
12 Talikka M, Kostadinova R, Xiang Y, Mathis C, Sewer A, Majeed S, Kuehn D, Frentzel S, Merg C, Geertz M, Martin F, Ivanov NV, Peitsch MC, Hoeng J. The response of human nasal and bronchial organotypic tissue cultures to repeated whole cigarette smoke exposure. Int J Toxicol 2014;33:506-17. [PMID: 25297719 DOI: 10.1177/1091581814551647] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
13 Chen P, Edelman JD, Gharib SA. Comparative evaluation of miRNA expression between in vitro and in vivo airway epithelium demonstrates widespread differences. Am J Pathol 2013;183:1405-10. [PMID: 24001474 DOI: 10.1016/j.ajpath.2013.07.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rivera-Burgos D, Sarkar U, Lever AR, Avram MJ, Coppeta JR, Wishnok JS, Borenstein JT, Tannenbaum SR. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model. Drug Metab Dispos 2016;44:220-6. [PMID: 26586376 DOI: 10.1124/dmd.115.066365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
15 Bartman CM, Stelzig KE, Linden DR, Prakash YS, Chiarella SE. Passive siRNA transfection method for gene knockdown in air-liquid interface airway epithelial cell cultures. Am J Physiol Lung Cell Mol Physiol 2021;321:L280-6. [PMID: 34037474 DOI: 10.1152/ajplung.00122.2021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Nishida K, Brune KA, Putcha N, Mandke P, O'Neal WK, Shade D, Srivastava V, Wang M, Lam H, An SS, Drummond MB, Hansel NN, Robinson DN, Sidhaye VK. Cigarette smoke disrupts monolayer integrity by altering epithelial cell-cell adhesion and cortical tension. Am J Physiol Lung Cell Mol Physiol 2017;313:L581-91. [PMID: 28642260 DOI: 10.1152/ajplung.00074.2017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
17 Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021;12:20417314211008696. [PMID: 33996022 DOI: 10.1177/20417314211008696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Gałęzowska G, Chraniuk M, Wolska L. In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review. TrAC Trends in Analytical Chemistry 2016;77:14-22. [DOI: 10.1016/j.trac.2015.10.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
19 Benam KH, Novak R, Nawroth J, Hirano-kobayashi M, Ferrante TC, Choe Y, Prantil-baun R, Weaver JC, Bahinski A, Parker KK, Ingber DE. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell Systems 2016;3:456-466.e4. [DOI: 10.1016/j.cels.2016.10.003] [Cited by in Crossref: 124] [Cited by in F6Publishing: 110] [Article Influence: 20.7] [Reference Citation Analysis]
20 Liu FF, Peng C, Ng JC. BTEX in vitro exposure tool using human lung cells: Trips and gains. Chemosphere 2015;128:321-6. [DOI: 10.1016/j.chemosphere.2015.01.058] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
21 Momi N, Kaur S, Rachagani S, Ganti AK, Batra SK. Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 2014;20:36-47. [PMID: 24238736 DOI: 10.1016/j.molmed.2013.10.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
22 Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020;318:L1063-73. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
23 Neilson L, Mankus C, Thorne D, Jackson G, Debay J, Meredith C. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicology in Vitro 2015;29:1952-62. [DOI: 10.1016/j.tiv.2015.05.018] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 13.4] [Reference Citation Analysis]
24 Smith MR, Clark B, Lüdicke F, Schaller J, Vanscheeuwijck P, Hoeng J, Peitsch MC. Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program. Regulatory Toxicology and Pharmacology 2016;81:S17-26. [DOI: 10.1016/j.yrtph.2016.07.006] [Cited by in Crossref: 139] [Cited by in F6Publishing: 104] [Article Influence: 23.2] [Reference Citation Analysis]
25 Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013;7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 5.8] [Reference Citation Analysis]
26 Tollstadius BF, Silva ACGD, Pedralli BCO, Valadares MC. Carbendazim induces death in alveolar epithelial cells: A comparison between submerged and at the air-liquid interface cell culture. Toxicol In Vitro 2019;58:78-85. [PMID: 30851412 DOI: 10.1016/j.tiv.2019.03.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
27 Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, Alysandratos KD, Richards A, Garcia-de-Alba C, Huang J, Hix OT, Werder RB, Bullitt E, Hinds A, Falconer I, Villacorta-Martin C, Jaenisch R, Kim CF, Kotton DN, Wilson AA. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022;7:e155589. [PMID: 35315362 DOI: 10.1172/jci.insight.155589] [Reference Citation Analysis]
28 Doukas SG, Vageli DP, Lazopoulos G, Spandidos DA, Sasaki CT, Tsatsakis A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020;9:E1031. [PMID: 32326378 DOI: 10.3390/cells9041031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Craig JM, Scott AL, Mitzner W. Immune-mediated inflammation in the pathogenesis of emphysema: insights from mouse models. Cell Tissue Res 2017;367:591-605. [PMID: 28164246 DOI: 10.1007/s00441-016-2567-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
30 Bhowmick R, Gappa-Fahlenkamp H. Cells and Culture Systems Used to Model the Small Airway Epithelium. Lung 2016;194:419-28. [PMID: 27071933 DOI: 10.1007/s00408-016-9875-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 5.7] [Reference Citation Analysis]
31 Agrawal S, Srivastava R, Rahmatpanah F, Madiraju C, BenMohamed L, Agrawal A. Airway epithelial cells enhance the immunogenicity of human myeloid dendritic cells under steady state. Clin Exp Immunol 2017;189:279-89. [PMID: 28470729 DOI: 10.1111/cei.12983] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
32 Durbin KR, Nottoli MS, Jenkins GJ. Effects of microtubule-inhibiting small molecule and antibody-drug conjugate treatment on differentially-sized A431 squamous carcinoma spheroids. Sci Rep 2020;10:907. [PMID: 31969631 DOI: 10.1038/s41598-020-57789-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Benam KH. Disrupting Experimental Strategies for Inhalation Toxicology: The Emergence of Microengineered Breathing-Smoking Human Lung-on-a-Chip. Applied In Vitro Toxicology 2018;4:107-14. [DOI: 10.1089/aivt.2017.0030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Everman JL, Rios C, Seibold MA. Utilization of Air-Liquid Interface Cultures as an In Vitro Model to Assess Primary Airway Epithelial Cell Responses to the Type 2 Cytokine Interleukin-13. Methods Mol Biol 2018;1799:419-32. [PMID: 29956168 DOI: 10.1007/978-1-4939-7896-0_30] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
35 Cheah EY, Mann TS, Burcham PC, Henry PJ. Functional characterisation and application of an ex vivo perfusion-superfusion system in murine airways. Journal of Pharmacological and Toxicological Methods 2017;84:66-77. [DOI: 10.1016/j.vascn.2016.11.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
36 Sauer JM, Hartung T, Leist M, Knudsen TB, Hoeng J, Hayes AW. Systems Toxicology: The Future of Risk Assessment. Int J Toxicol 2015;34:346-8. [PMID: 25804424 DOI: 10.1177/1091581815576551] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
37 Zaidman NA, Panoskaltsis-Mortari A, O'Grady SM. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance. Am J Physiol Cell Physiol 2016;311:C225-36. [PMID: 27306366 DOI: 10.1152/ajpcell.00073.2016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
38 Pomerenke A. Organotypic Models of Lung Cancer. Curr Top Microbiol Immunol 2021;430:161-81. [PMID: 29423618 DOI: 10.1007/82_2017_79] [Reference Citation Analysis]
39 Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019;99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 23.0] [Reference Citation Analysis]
40 Azzopardi D, Haswell LE, Foss-Smith G, Hewitt K, Asquith N, Corke S, Phillips G. Evaluation of an air-liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols. Toxicol In Vitro 2015;29:1720-8. [PMID: 26096598 DOI: 10.1016/j.tiv.2015.06.016] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
41 Zavala J, O'Brien B, Lichtveld K, Sexton KG, Rusyn I, Jaspers I, Vizuete W. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. Inhal Toxicol 2016;28:251-9. [PMID: 27100558 DOI: 10.3109/08958378.2016.1157227] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
42 Homma T, Kato A, Sakashita M, Norton JE, Suh LA, Carter RG, Schleimer RP. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors. Am J Respir Cell Mol Biol 2015;52:471-81. [PMID: 25180535 DOI: 10.1165/rcmb.2014-0240OC] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
43 Da Silva E, Vogel U, Hougaard KS, Pérez-Gil J, Zuo YY, Sørli JB. An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Curr Res Toxicol 2021;2:225-36. [PMID: 34345865 DOI: 10.1016/j.crtox.2021.05.005] [Reference Citation Analysis]
44 Marescotti D, Mathis C, Belcastro V, Leroy P, Acali S, Martin F, Dulize R, Bornand D, Peric D, Guedj E, Ortega Torres L, Biasioli M, Fuhrimann M, Fernandes E, Frauendorfer F, Gonzalez Suarez I, Sciuscio D, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology assessment of a representative e-liquid formulation using human primary bronchial epithelial cells. Toxicol Rep 2020;7:67-80. [PMID: 31886136 DOI: 10.1016/j.toxrep.2019.11.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
45 Cozens D, Sutherland E, Marchesi F, Taylor G, Berry CC, Davies RL. Temporal differentiation of bovine airway epithelial cells grown at an air-liquid interface. Sci Rep 2018;8:14893. [PMID: 30291311 DOI: 10.1038/s41598-018-33180-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
46 Ji J, Hedelin A, Malmlöf M, Kessler V, Seisenbaeva G, Gerde P, Palmberg L. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles. PLoS One 2017;12:e0170428. [PMID: 28107509 DOI: 10.1371/journal.pone.0170428] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
47 Hayasaki TG, Dos Santos TRM, da Silva ACG, Valadares MC. Ex vivo pulmonary assay applied for screening of toxicity potential of chemicals. Food Chem Toxicol 2022;:112820. [PMID: 35033595 DOI: 10.1016/j.fct.2022.112820] [Reference Citation Analysis]
48 Boei JJWA, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 2017;91:2093-105. [PMID: 27738743 DOI: 10.1007/s00204-016-1868-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
49 Lai M, Pifferi M, Bush A, Piras M, Michelucci A, Di Cicco M, del Grosso A, Quaranta P, Cursi C, Tantillo E, Franceschi S, Mazzanti MC, Simi P, Saggese G, Boner A, Pistello M. Gene editing of DNAH11 restores normal cilia motility in primary ciliary dyskinesia. J Med Genet 2016;53:242-9. [DOI: 10.1136/jmedgenet-2015-103539] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
50 Iskandar AR, Martin F, Talikka M, Schlage WK, Kostadinova R, Mathis C, Hoeng J, Peitsch MC. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. Biomed Res Int 2013;2013:512086. [PMID: 24224167 DOI: 10.1155/2013/512086] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
51 Mülhopt S, Dilger M, Diabaté S, Schlager C, Krebs T, Zimmermann R, Buters J, Oeder S, Wäscher T, Weiss C, Paur H. Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. Journal of Aerosol Science 2016;96:38-55. [DOI: 10.1016/j.jaerosci.2016.02.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
52 Mathis C, Gebel S, Poussin C, Belcastro V, Sewer A, Weisensee D, Hengstermann A, Ansari S, Wagner S, Peitsch MC, Hoeng J. A systems biology approach reveals the dose- and time-dependent effect of primary human airway epithelium tissue culture after exposure to cigarette smoke in vitro. Bioinform Biol Insights 2015;9:19-35. [PMID: 25788831 DOI: 10.4137/BBI.S19908] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
53 Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, Ramalingam SS, Werner EM, Dynan WS, Cooper PK, Corbett AH, Doetsch PW. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res 2018;46:4515-32. [PMID: 29522130 DOI: 10.1093/nar/gky162] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
54 Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol 2014;50:471-82. [PMID: 24111585 DOI: 10.1165/rcmb.2013-0348TR] [Cited by in Crossref: 67] [Cited by in F6Publishing: 35] [Article Influence: 8.4] [Reference Citation Analysis]
55 Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015;309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 10.0] [Reference Citation Analysis]
56 Iskandar AR, Martinez Y, Martin F, Schlage WK, Leroy P, Sewer A, Torres LO, Majeed S, Merg C, Trivedi K, Guedj E, Frentzel S, Mathis C, Ivanov NV, Peitsch MC, Hoeng J. Comparative effects of a candidate modified-risk tobacco product Aerosol and cigarette smoke on human organotypic small airway cultures: a systems toxicology approach. Toxicol Res (Camb) 2017;6:930-46. [PMID: 30090554 DOI: 10.1039/c7tx00152e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
57 Nordlund M, Belka M, Kuczaj AK, Lizal F, Jedelsky J, Elcner J, Jicha M, Sauser Y, Le Bouhellec S, Cosandey S, Majeed S, Vuillaume G, Peitsch MC, Hoeng J. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract. Inhalation Toxicology 2017;29:113-25. [DOI: 10.1080/08958378.2017.1315196] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
58 Johansson K, Woodruff PG, Ansel KM. Regulation of airway immunity by epithelial miRNAs. Immunol Rev 2021. [PMID: 34549450 DOI: 10.1111/imr.13028] [Reference Citation Analysis]
59 O'Boyle N, Sutherland E, Berry CC, Davies RL. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2017;12:e0181583. [PMID: 28746416 DOI: 10.1371/journal.pone.0181583] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
60 Xie T, Liang J, Geng Y, Liu N, Kurkciyan A, Kulur V, Leng D, Deng N, Liu Z, Song J, Chen P, Noble PW, Jiang D. MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. Am J Respir Cell Mol Biol 2017;57:721-32. [PMID: 28799781 DOI: 10.1165/rcmb.2017-0133OC] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
61 Hoeng J, Maeder S, Vanscheeuwijck P, Peitsch MC. Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Intern Emerg Med 2019;14:821-34. [PMID: 30767158 DOI: 10.1007/s11739-019-02045-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
62 Aguiar JA, Huff RD, Tse W, Stämpfli MR, McConkey BJ, Doxey AC, Hirota JA. Transcriptomic and barrier responses of human airway epithelial cells exposed to cannabis smoke. Physiol Rep 2019;7:e14249. [PMID: 31646766 DOI: 10.14814/phy2.14249] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
63 Haswell LE, Baxter A, Banerjee A, Verrastro I, Mushonganono J, Adamson J, Thorne D, Gaça M, Minet E. Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics. Sci Rep 2017;7:888. [PMID: 28420881 DOI: 10.1038/s41598-017-00852-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
64 Benam KH, Novak R, Ferrante TC, Choe Y, Ingber DE. Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips. Nat Protoc 2020;15:183-206. [PMID: 31925401 DOI: 10.1038/s41596-019-0230-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
65 Ito S, Ishimori K, Ishikawa S. Effects of repeated cigarette smoke extract exposure over one month on human bronchial epithelial organotypic culture. Toxicol Rep 2018;5:864-70. [PMID: 30167377 DOI: 10.1016/j.toxrep.2018.08.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
66 Hoeng J, Talikka M, Martin F, Sewer A, Yang X, Iskandar A, Schlage WK, Peitsch MC. Case study: the role of mechanistic network models in systems toxicology. Drug Discov Today 2014;19:183-92. [PMID: 23933191 DOI: 10.1016/j.drudis.2013.07.023] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
67 Murray LA, Dunmore R, Camelo A, Da Silva CA, Gustavsson MJ, Habiel DM, Hackett TL, Hogaboam CM, Sleeman MA, Knight DA. Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res 2017;18:82. [PMID: 28468623 DOI: 10.1186/s12931-017-0565-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
68 Phillips G, Czekala L, Behrsing HP, Amin K, Budde J, Stevenson M, Wieczorek R, Walele T, Simms L. Acute electronic vapour product whole aerosol exposure of 3D human bronchial tissue results in minimal cellular and transcriptomic responses when compared to cigarette smoke. Toxicology Research and Application 2021;5:239784732098849. [DOI: 10.1177/2397847320988496] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Chandiramohan A, Dabaghi M, Aguiar JA, Tiessen N, Stewart M, Cao QT, Nguyen JP, Makhdami N, Cox G, Doxey AC, Hirota JA. Development and validation of an open-source, disposable, 3D-printed in vitro environmental exposure system for Transwell culture inserts. ERJ Open Res 2021;7:00705-2020. [PMID: 33614779 DOI: 10.1183/23120541.00705-2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
70 Sewer A, Kogel U, Talikka M, Wong ET, Martin F, Xiang Y, Guedj E, Ivanov NV, Hoeng J, Peitsch MC. Evaluation of the Tobacco Heating System 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosol causes reduced effects on lung tissue compared with cigarette smoke. Regul Toxicol Pharmacol. 2016;81 Suppl 2:S82-S92. [PMID: 27866933 DOI: 10.1016/j.yrtph.2016.11.018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
71 Lucci F, Castro ND, Rostami AA, Oldham MJ, Hoeng J, Pithawalla YB, Kuczaj AK. Characterization and modeling of aerosol deposition in Vitrocell® exposure systems - exposure well chamber deposition efficiency. Journal of Aerosol Science 2018;123:141-60. [DOI: 10.1016/j.jaerosci.2018.06.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
72 Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 2014;79-80:50-67. [PMID: 25453261 DOI: 10.1016/j.addr.2014.10.015] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 10.3] [Reference Citation Analysis]
73 Frijns E, Verstraelen S, Stoehr LC, Van Laer J, Jacobs A, Peters J, Tirez K, Boyles MSP, Geppert M, Madl P, Nelissen I, Duschl A, Himly M. A Novel Exposure System Termed NAVETTA for In Vitro Laminar Flow Electrodeposition of Nanoaerosol and Evaluation of Immune Effects in Human Lung Reporter Cells. Environ Sci Technol 2017;51:5259-69. [PMID: 28339192 DOI: 10.1021/acs.est.7b00493] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
74 Chen S, Schoen J. Air-liquid interface cell culture: From airway epithelium to the female reproductive tract. Reprod Domest Anim 2019;54 Suppl 3:38-45. [PMID: 31512315 DOI: 10.1111/rda.13481] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
75 Fujita Y, Araya J, Ito S, Kobayashi K, Kosaka N, Yoshioka Y, Kadota T, Hara H, Kuwano K, Ochiya T. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles 2015;4:28388. [PMID: 26563733 DOI: 10.3402/jev.v4.28388] [Cited by in Crossref: 106] [Cited by in F6Publishing: 104] [Article Influence: 15.1] [Reference Citation Analysis]
76 Dalrymple A, Ordoñez P, Thorne D, Walker D, Camacho OM, Büttner A, Dillon D, Meredith C. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal Toxicol 2016;28:324-38. [PMID: 27160659 DOI: 10.3109/08958378.2016.1170911] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
77 Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017;6:631-53. [PMID: 30090531 DOI: 10.1039/c7tx00047b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
78 Saint-Criq V, Delpiano L, Casement J, Onuora JC, Lin J, Gray MA. Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020;9:E2137. [PMID: 32967385 DOI: 10.3390/cells9092137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
79 Pifferi M, Bush A, Caramella D, Metelli MR, Di Cicco M, Piras M, Gherarducci G, Capristo C, Maggi F, Peroni D, Boner AL. Matrix metalloproteinases and airway remodeling and function in primary ciliary dyskinesia. Respir Med 2017;124:49-56. [PMID: 28284321 DOI: 10.1016/j.rmed.2017.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
80 Manuppello JR, Sullivan KM. Toxicity assessment of tobacco products in vitro. Altern Lab Anim 2015;43:39-67. [PMID: 25802997 DOI: 10.1177/026119291504300108] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
81 Boué S, Goedertier D, Hoeng J, Kuczaj A, Majeed S, Mathis C, May A, Phillips B, Peitsch MC, Radtke F, Schlage WK, Tan WT, Vanscheeuwijck P. State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-not-burn tobacco products. Toxicology Research and Application 2020;4:239784731989786. [DOI: 10.1177/2397847319897869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
82 Iskandar AR, Gonzalez-Suarez I, Majeed S, Marescotti D, Sewer A, Xiang Y, Leroy P, Guedj E, Mathis C, Schaller JP, Vanscheeuwijck P, Frentzel S, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A framework for in vitro systems toxicology assessment of e-liquids. Toxicol Mech Methods 2016;26:389-413. [PMID: 27117495 DOI: 10.3109/15376516.2016.1170251] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 8.3] [Reference Citation Analysis]
83 Smart DJ, Phillips G. Collecting e-cigarette aerosols for in vitro applications: A survey of the biomedical literature and opportunities to increase the value of submerged cell culture-based assessments. J Appl Toxicol 2021;41:161-74. [PMID: 33015847 DOI: 10.1002/jat.4064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Iskandar AR, Martin F, Leroy P, Schlage WK, Mathis C, Titz B, Kondylis A, Schneider T, Vuillaume G, Sewer A, Guedj E, Trivedi K, Elamin A, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: A systems toxicology assessment. Food Chem Toxicol 2018;115:109-26. [PMID: 29501877 DOI: 10.1016/j.fct.2018.02.063] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
85 Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021;:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Reference Citation Analysis]
86 Clippinger AJ, Allen D, Jarabek AM, Corvaro M, Gaça M, Gehen S, Hotchkiss JA, Patlewicz G, Melbourne J, Hinderliter P, Yoon M, Huh D, Lowit A, Buckley B, Bartels M, BéruBé K, Wilson DM, Indans I, Vinken M. Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report. Toxicol In Vitro 2018;48:53-70. [PMID: 29277654 DOI: 10.1016/j.tiv.2017.12.011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
87 Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol 2019;46:101333. [PMID: 31703832 DOI: 10.1016/j.smim.2019.101333] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 29.3] [Reference Citation Analysis]
88 Fields W, Maione A, Keyser B, Bombick B. Characterization and Application of the VITROCELL VC1 Smoke Exposure System and 3D EpiAirway Models for Toxicological and e-Cigarette Evaluations. Applied In Vitro Toxicology 2017;3:68-83. [DOI: 10.1089/aivt.2016.0035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 4.4] [Reference Citation Analysis]
89 Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016;29:1252-69. [DOI: 10.1021/acs.chemrestox.6b00174] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]