BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018;82:e00033-18. [PMID: 30209071 DOI: 10.1128/MMBR.00033-18] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MR, Howell PL, Sheppard DC. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol 2022;5:502. [PMID: 35618750 DOI: 10.1038/s42003-022-03453-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Barceló IM, Torrens G, Escobar-Salom M, Jordana-Lluch E, Capó-Bauzá MM, Ramón-Pallín C, García-Cuaresma D, Fraile-Ribot PA, Mulet X, Oliver A, Juan C. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence. Microbiol Spectr 2022;:e0201921. [PMID: 35171032 DOI: 10.1128/spectrum.02019-21] [Reference Citation Analysis]
3 Escobar‐salom M, Torrens G, Jordana‐lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant Gram ‐negatives. Biological Reviews. [DOI: 10.1111/brv.12830] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Tian D, Han M. Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Developmental Cell 2022. [DOI: 10.1016/j.devcel.2021.12.016] [Reference Citation Analysis]
5 Colquhoun JM, Farokhyfar M, Hutcheson AR, Anderson A, Bethel CR, Bonomo RA, Clarke AJ, Rather PN. OXA-23 β-Lactamase Overexpression in Acinetobacter baumannii Drives Physiological Changes Resulting in New Genetic Vulnerabilities. mBio 2021;12:e0313721. [PMID: 34872351 DOI: 10.1128/mBio.03137-21] [Reference Citation Analysis]
6 Patel AV, Turner RD, Rifflet A, Acosta-Martin AE, Nichols A, Awad MM, Lyras D, Gomperts Boneca I, Bern M, Collins MO, Mesnage S. PGFinder, a novel analysis pipeline for the consistent, reproducible, and high-resolution structural analysis of bacterial peptidoglycans. Elife 2021;10:e70597. [PMID: 34579805 DOI: 10.7554/eLife.70597] [Reference Citation Analysis]
7 Singh S, Singh PK, Jha A, Naik P, Joseph J, Giri S, Kumar A. Integrative metabolomics and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial infection. Cell Rep Med 2021;2:100277. [PMID: 34095879 DOI: 10.1016/j.xcrm.2021.100277] [Reference Citation Analysis]
8 Coolen JPM, den Drijver EPM, Verweij JJ, Schildkraut JA, Neveling K, Melchers WJG, Kolwijck E, Wertheim HFL, Kluytmans JAJW, Huynen MA. Genome-wide analysis in Escherichia coli unravels a high level of genetic homoplasy associated with cefotaxime resistance. Microb Genom 2021;7. [PMID: 33843573 DOI: 10.1099/mgen.0.000556] [Reference Citation Analysis]
9 Skliros D, Kalatzis PG, Kalloniati C, Komaitis F, Papathanasiou S, Kouri ED, Udvardi MK, Kokkari C, Katharios P, Flemetakis E. The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses 2021;13:656. [PMID: 33920240 DOI: 10.3390/v13040656] [Reference Citation Analysis]
10 Lisboa J, Pereira C, Rifflet A, Ayala J, Terceti MS, Barca AV, Rodrigues I, Pereira PJB, Osorio CR, García-Del Portillo F, Gomperts Boneca I, do Vale A, Dos Santos NMS. A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida Cleaves the Peptidoglycan of Potentially Competing Bacteria. mSphere 2021;6:e00736-20. [PMID: 33536321 DOI: 10.1128/mSphere.00736-20] [Reference Citation Analysis]
11 Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020;8:E1571. [PMID: 33066018 DOI: 10.3390/microorganisms8101571] [Reference Citation Analysis]
12 Leung MHY, Tong X, Bastien P, Guinot F, Tenenhaus A, Appenzeller BMR, Betts RJ, Mezzache S, Li J, Bourokba N, Breton L, Clavaud C, Lee PKH. Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome 2020;8:100. [PMID: 32591010 DOI: 10.1186/s40168-020-00874-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
13 Nakamura N, Hoshino Y, Shiga T, Haneda T, Okada N, Miki T. A Peptidoglycan Amidase Activator Impacts Salmonella enterica Serovar Typhimurium Gut Infection. Infect Immun 2020;88:e00187-20. [PMID: 32284369 DOI: 10.1128/IAI.00187-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Apostolos AJ, Pidgeon SE, Pires MM. Remodeling of Cross-bridges Controls Peptidoglycan Cross-linking Levels in Bacterial Cell Walls. ACS Chem Biol 2020;15:1261-7. [PMID: 32167281 DOI: 10.1021/acschembio.0c00002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
15 Torrens G, Hernández SB, Ayala JA, Moya B, Juan C, Cava F, Oliver A. Regulation of AmpC-Driven β-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling. mSystems 2019;4:e00524-19. [PMID: 31796566 DOI: 10.1128/mSystems.00524-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
16 Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci 2020;29:629-46. [PMID: 31747090 DOI: 10.1002/pro.3737] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
17 Torrens G, Escobar-Salom M, Pol-Pol E, Camps-Munar C, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Front Microbiol 2019;10:1868. [PMID: 31507543 DOI: 10.3389/fmicb.2019.01868] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
18 Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S, Munar-Bestard M, González-Nicolau MDM, Cabrera-Venegas YJ, Rigo-Rumbos EN, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 2019;9:3575. [PMID: 30837659 DOI: 10.1038/s41598-019-40440-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dik DA, Madukoma CS, Tomoshige S, Kim C, Lastochkin E, Boggess WC, Fisher JF, Shrout JD, Mobashery S. Slt, MltD, and MltG of Pseudomonas aeruginosa as Targets of Bulgecin A in Potentiation of β-Lactam Antibiotics. ACS Chem Biol 2019;14:296-303. [PMID: 30620575 DOI: 10.1021/acschembio.8b01025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]