BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Díez-Martínez R, de Paz HD, Bustamante N, García E, Menéndez M, García P. Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother 2013;57:5355-65. [PMID: 23959317 DOI: 10.1128/AAC.01372-13] [Cited by in Crossref: 61] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Bull JJ, Crandall C, Rodriguez A, Krone SM. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins. PeerJ 2015;3:e879. [PMID: 25870772 DOI: 10.7717/peerj.879] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
2 Fernández L, Cima-Cabal MD, Duarte AC, Rodríguez A, García-Suárez MDM, García P. Gram-Positive Pneumonia: Possibilities Offered by Phage Therapy. Antibiotics (Basel) 2021;10:1000. [PMID: 34439050 DOI: 10.3390/antibiotics10081000] [Reference Citation Analysis]
3 Son B, Kong M, Ryu S. The Auxiliary Role of the Amidase Domain in Cell Wall Binding and Exolytic Activity of Staphylococcal Phage Endolysins. Viruses 2018;10:E284. [PMID: 29799482 DOI: 10.3390/v10060284] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
4 Díez-Martínez R, García-Fernández E, Manzano M, Martínez Á, Domenech M, Vallet-Regí M, García P. Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections. Sci Rep 2016;6:19525. [PMID: 26776881 DOI: 10.1038/srep19525] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
5 Vázquez R, Domenech M, Iglesias-Bexiga M, Menéndez M, García P. Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep 2017;7:16506. [PMID: 29184097 DOI: 10.1038/s41598-017-16736-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
6 Wysocka A, Łężniak Ł, Jagielska E, Sabała I. Electrostatic Interaction with the Bacterial Cell Envelope Tunes the Lytic Activity of Two Novel Peptidoglycan Hydrolases. Microbiol Spectr 2022;:e0045522. [PMID: 35467396 DOI: 10.1128/spectrum.00455-22] [Reference Citation Analysis]
7 Silva MD, Oliveira H, Faustino A, Sillankorva S. Characterization of MSlys, the endolysin of Streptococcus pneumoniae phage MS1. Biotechnol Rep (Amst) 2020;28:e00547. [PMID: 33204659 DOI: 10.1016/j.btre.2020.e00547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021;10:124. [PMID: 33525684 DOI: 10.3390/antibiotics10020124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Rodríguez-Rubio L, Chang WL, Gutiérrez D, Lavigne R, Martínez B, Rodríguez A, Govers SK, Aertsen A, Hirl C, Biebl M, Briers Y, García P. 'Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep 2016;6:35382. [PMID: 27775093 DOI: 10.1038/srep35382] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
10 Gutiérrez D, Fernández L, Martínez B, Ruas-Madiedo P, García P, Rodríguez A. Real-Time Assessment of Staphylococcus aureus Biofilm Disruption by Phage-Derived Proteins. Front Microbiol 2017;8:1632. [PMID: 28883818 DOI: 10.3389/fmicb.2017.01632] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
11 Shang X, Nelson DC. Contributions of Net Charge on the PlyC Endolysin CHAP Domain. Antibiotics (Basel) 2019;8:E70. [PMID: 31142020 DOI: 10.3390/antibiotics8020070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Moscoso M, Esteban-Torres M, Menéndez M, García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS One 2014;9:e101037. [PMID: 25006964 DOI: 10.1371/journal.pone.0101037] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
13 Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 2015;5:16198. [PMID: 26537571 DOI: 10.1038/srep16198] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
14 van der Kamp I, Draper LA, Smith MK, Buttimer C, Ross RP, Hill C. A New Phage Lysin Isolated from the Oral Microbiome Targeting Streptococcus pneumoniae. Pharmaceuticals (Basel) 2020;13:E478. [PMID: 33352708 DOI: 10.3390/ph13120478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Wysocka A, Jagielska E, Łężniak Ł, Sabała I. Two New M23 Peptidoglycan Hydrolases With Distinct Net Charge. Front Microbiol 2021;12:719689. [PMID: 34630350 DOI: 10.3389/fmicb.2021.719689] [Reference Citation Analysis]
16 Gutiérrez D, Garrido V, Fernández L, Portilla S, Rodríguez A, Grilló MJ, García P. Phage Lytic Protein LysRODI Prevents Staphylococcal Mastitis in Mice. Front Microbiol 2020;11:7. [PMID: 32038593 DOI: 10.3389/fmicb.2020.00007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
17 Binte Muhammad Jai HS, Dam LC, Tay LS, Koh JJW, Loo HL, Kline KA, Goh BC. Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Front Microbiol 2020;11:574739. [PMID: 33324362 DOI: 10.3389/fmicb.2020.574739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Viruses 2019;11:E268. [PMID: 30889807 DOI: 10.3390/v11030268] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
19 Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R. Bacteriophages and Their Immunological Applications against Infectious Threats. J Immunol Res 2017;2017:3780697. [PMID: 28484722 DOI: 10.1155/2017/3780697] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
20 Vázquez R, García P. Synergy Between Two Chimeric Lysins to Kill Streptococcus pneumoniae. Front Microbiol 2019;10:1251. [PMID: 31231338 DOI: 10.3389/fmicb.2019.01251] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
21 Wu H, Huang J, Lu H, Li G, Huang Q. GMEnzy: a genetically modified enzybiotic database. PLoS One 2014;9:e103687. [PMID: 25084271 DOI: 10.1371/journal.pone.0103687] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
22 Gallego-Páramo C, Hernández-Ortiz N, Buey RM, Rico-Lastres P, García G, Díaz JF, García P, Menéndez M. Structural and Functional Insights Into Skl and Pal Endolysins, Two Cysteine-Amidases With Anti-pneumococcal Activity. Dithiothreitol (DTT) Effect on Lytic Activity. Front Microbiol 2021;12:740914. [PMID: 34777288 DOI: 10.3389/fmicb.2021.740914] [Reference Citation Analysis]
23 Huang G, Shen X, Gong Y, Dong Z, Zhao X, Shen W, Wang J, Hu F, Peng Y. Antibacterial properties of Acinetobacter baumannii phage Abp1 endolysin (PlyAB1). BMC Infect Dis 2014;14:681. [PMID: 25495514 DOI: 10.1186/s12879-014-0681-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
24 Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2022.2059442] [Reference Citation Analysis]
25 Zhao H, Eszterhas S, Furlon J, Cheng H, Griswold KE. Electrostatic-Mediated Affinity Tuning of Lysostaphin Accelerates Bacterial Lysis Kinetics and Enhances In Vivo Efficacy. Antimicrob Agents Chemother 2021;65:e02199-20. [PMID: 33468459 DOI: 10.1128/AAC.02199-20] [Reference Citation Analysis]
26 Corsini B, Díez-Martínez R, Aguinagalde L, González-Camacho F, García-Fernández E, Letrado P, García P, Yuste J. Chemotherapy with Phage Lysins Reduces Pneumococcal Colonization of the Respiratory Tract. Antimicrob Agents Chemother 2018;62:e02212-17. [PMID: 29581113 DOI: 10.1128/AAC.02212-17] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
27 Yang H, Luo D, Etobayeva I, Li X, Gong Y, Wang S, Li Q, Xu P, Yin W, He J, Nelson DC, Wei H. Linker Editing of Pneumococcal Lysin ClyJ Conveys Improved Bactericidal Activity. Antimicrob Agents Chemother 2020;64:e01610-19. [PMID: 31767724 DOI: 10.1128/AAC.01610-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Camacho-gonzález CE, Cardona-félix CS, Zamora-gasga V, Pérez-larios A, Sánchez-burgos JA. Biofunctionalization of Endolysins with Oligosacharides: Formulation of Therapeutic Agents to Combat Multi-Resistant Bacteria and Potential Strategies for Their Application. Polysaccharides 2022;3:306-25. [DOI: 10.3390/polysaccharides3020018] [Reference Citation Analysis]
29 São-José C. Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018;7:E29. [PMID: 29565804 DOI: 10.3390/antibiotics7020029] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 13.8] [Reference Citation Analysis]
30 Lood R, Raz A, Molina H, Euler CW, Fischetti VA. A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother 2014;58:3073-84. [PMID: 24637688 DOI: 10.1128/AAC.00115-14] [Cited by in Crossref: 36] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
31 Raz A, Serrano A, Hernandez A, Euler CW, Fischetti VA. Isolation of Phage Lysins That Effectively Kill Pseudomonas aeruginosa in Mouse Models of Lung and Skin Infection. Antimicrob Agents Chemother 2019;63:e00024-19. [PMID: 31010858 DOI: 10.1128/AAC.00024-19] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
32 Vázquez R, García E, García P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Front Immunol 2018;9:2252. [PMID: 30459750 DOI: 10.3389/fimmu.2018.02252] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
33 Vázquez R, García E, García P. Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design. J Virol 2021;95:e0032121. [PMID: 33883227 DOI: 10.1128/JVI.00321-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Bustamante N, Iglesias-Bexiga M, Bernardo-García N, Silva-Martín N, García G, Campanero-Rhodes MA, García E, Usón I, Buey RM, García P, Hermoso JA, Bruix M, Menéndez M. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 2017;7:16494. [PMID: 29184076 DOI: 10.1038/s41598-017-16392-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
35 Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021;10:1497. [PMID: 34943709 DOI: 10.3390/antibiotics10121497] [Reference Citation Analysis]
36 Oliveira H, São-José C, Azeredo J. Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018;10:E292. [PMID: 29844287 DOI: 10.3390/v10060292] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 11.8] [Reference Citation Analysis]
37 Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother. 2015;59:1983-1991. [PMID: 25605353 DOI: 10.1128/aac.04641-14] [Cited by in Crossref: 121] [Cited by in F6Publishing: 76] [Article Influence: 17.3] [Reference Citation Analysis]
38 Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies. Clin Microbiol Rev 2018;31:e00071-17. [PMID: 29187396 DOI: 10.1128/CMR.00071-17] [Cited by in Crossref: 63] [Cited by in F6Publishing: 43] [Article Influence: 12.6] [Reference Citation Analysis]
39 Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016;7:1156. [PMID: 27516758 DOI: 10.3389/fmicb.2016.01156] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
40 Yang W, Gondil VS, Luo D, He J, Wei H, Yang H. Optimized Silica-Binding Peptide-Mediated Delivery of Bactericidal Lysin Efficiently Prevents Staphylococcus aureus from Adhering to Device Surfaces. Int J Mol Sci 2021;22:12544. [PMID: 34830425 DOI: 10.3390/ijms222212544] [Reference Citation Analysis]
41 Vázquez R, Blanco-Gañán S, Ruiz S, García P. Mining of Gram-Negative Surface-Active Enzybiotic Candidates by Sequence-Based Calculation of Physicochemical Properties. Front Microbiol 2021;12:660403. [PMID: 34113327 DOI: 10.3389/fmicb.2021.660403] [Reference Citation Analysis]
42 Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015;5:e1062590. [PMID: 26442196 DOI: 10.1080/21597081.2015.1062590] [Cited by in Crossref: 94] [Cited by in F6Publishing: 79] [Article Influence: 13.4] [Reference Citation Analysis]
43 Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021;10:1534. [PMID: 34943746 DOI: 10.3390/antibiotics10121534] [Reference Citation Analysis]