BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jacobsen F, Fisahn C, Sorkin M, Thiele I, Hirsch T, Stricker I, Klaassen T, Roemer A, Fugmann B, Steinstraesser L. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:2325-34. [PMID: 21343458 DOI: 10.1128/AAC.01071-10] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Hua J, Teng P, Zou Y, Zhang C, Shen X, Cai J, Hu Y. Small antimicrobial agents encapsulated in poly(epsilon-caprolactone)-poly(ethylene glycol) nanoparticles for treatment of S. aureus-infected wounds. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4369-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
2 Moon SH, Kaufmann Y, Fujiwara R, Huang E. Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection. BMC Microbiol 2021;21:326. [PMID: 34819026 DOI: 10.1186/s12866-021-02383-z] [Reference Citation Analysis]
3 Topaz M, Ashkenazi I, Barzel O, Biswas S, Atar D, Shadmi N, Siev-Ner I. Minimizing treatment complexity of combat-related soft tissue injuries using a dedicated tension relief system and negative pressure therapy augmented by high-dose in situ antibiotic therapy and oxygen delivery: a retrospective study. Burns Trauma 2021;9:tkab007. [PMID: 34212059 DOI: 10.1093/burnst/tkab007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Huang HN, Pan CY, Wu HY, Chen JY. Antimicrobial peptide Epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model. Oncotarget 2017;8:21067-80. [PMID: 28177877 DOI: 10.18632/oncotarget.15042] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
5 Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J Microbiol 2014;52:188-99. [PMID: 24585050 DOI: 10.1007/s12275-014-4067-3] [Cited by in Crossref: 96] [Cited by in F6Publishing: 90] [Article Influence: 12.0] [Reference Citation Analysis]
6 Yin M, Li J, Huang L, Li Y, Yuan M, Luo Y, Armato U, Zhang L, Wei Y, Li Y, Deng J, Wang P, Wu J. Identification of microbes in wounds using near-infrared spectroscopy. Burns 2021:S0305-4179(21)00249-7. [PMID: 34862090 DOI: 10.1016/j.burns.2021.09.002] [Reference Citation Analysis]
7 Bangera D, Shenoy SM, Saldanha DR. Clinico-microbiological study of Pseudomonas aeruginosa in wound infections and the detection of metallo-β-lactamase production. Int Wound J 2016;13:1299-302. [PMID: 26514946 DOI: 10.1111/iwj.12519] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
8 Kalita S, Devi B, Kandimalla R, Sharma KK, Sharma A, Kalita K, Kataki AC, Kotoky J. Chloramphenicol encapsulated in poly-ε-caprolactone-pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds. Int J Nanomedicine 2015;10:2971-84. [PMID: 25931822 DOI: 10.2147/IJN.S75023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
9 Shariati A, Moradabadi A, Ghaznavi-Rad E, Dadmanesh M, Komijani M, Nojoomi F. Investigation into antibacterial and wound healing properties of platelets lysate against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. Ann Clin Microbiol Antimicrob 2021;20:40. [PMID: 34044843 DOI: 10.1186/s12941-021-00442-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bowers DR, Tam VH. Pseudomonas aeruginosa treatment and transmission reduction. Expert Review of Anti-infective Therapy 2014;11:831-7. [DOI: 10.1586/14787210.2013.816463] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Roy DC, Tomblyn S, Burmeister DM, Wrice NL, Becerra SC, Burnett LR, Saul JM, Christy RJ. Ciprofloxacin-Loaded Keratin Hydrogels Prevent Pseudomonas aeruginosa Infection and Support Healing in a Porcine Full-Thickness Excisional Wound. Adv Wound Care (New Rochelle) 2015;4:457-68. [PMID: 26244102 DOI: 10.1089/wound.2014.0576] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
12 Shahbazi H, Hashemi Gahruie H, Golmakani MT, Eskandari MH, Movahedi M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci Nutr 2018;6:2568-77. [PMID: 30510759 DOI: 10.1002/fsn3.873] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
13 Guo Z, Wang J, Fang D, Wu Z. Fragmentation of Moxifloxacin and Its Analogs by Electrospray Ionization Time-of-Flight Mass Spectrometry. Analytical Letters 2014;47:2882-90. [DOI: 10.1080/00032719.2014.928886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
14 Hameed M, Rasul A, Latif S, Rasool M, Abbas G, Siddique MI, Waqas MK, Khan IU, Yousaf AM, Shah PA. Fabrication of moxifloxacin HCl-loaded biodegradable chitosan nanoparticles for potential antibacterial and accelerated cutaneous wound healing efficacy. J Microencapsul 2021;:1-12. [PMID: 34919007 DOI: 10.1080/02652048.2021.2019332] [Reference Citation Analysis]