BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Udrea A, Mitra GD, Costea D, Noels EC, Wakkee M, Siegel DM, de Carvalho TM, Nijsten TEC. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. J Eur Acad Dermatol Venereol 2020;34:648-55. [PMID: 31494983 DOI: 10.1111/jdv.15935] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Mahmood F, Bendayan S, Ghazawi FM, Litvinov IV. Editorial: The Emerging Role of Artificial Intelligence in Dermatology. Front Med (Lausanne) 2021;8:751649. [PMID: 34869445 DOI: 10.3389/fmed.2021.751649] [Reference Citation Analysis]
2 Deeks J, Dinnes J, Williams H. Sensitivity and specificity of SkinVision are likely to have been overestimated. J Eur Acad Dermatol Venereol 2020;34. [DOI: 10.1111/jdv.16382] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Tschandl P. Artificial intelligence for melanoma diagnosis. Ital J Dermatol Venereol 2021;156. [DOI: 10.23736/s2784-8671.20.06753-x] [Reference Citation Analysis]
4 Matin RN, Dinnes J. AI-based smartphone apps for risk assessment of skin cancer need more evaluation and better regulation. Br J Cancer 2021;124:1749-50. [PMID: 33742148 DOI: 10.1038/s41416-021-01302-3] [Reference Citation Analysis]
5 Jinnai S, Yamazaki N, Hirano Y, Sugawara Y, Ohe Y, Hamamoto R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules. 2020;10. [PMID: 32751349 DOI: 10.3390/biom10081123] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
6 Acharya P, Mathur M. Smartphone applications for the triage of skin lesions using machine learning: time to integrate the clinical information? J Eur Acad Dermatol Venereol 2020;34. [DOI: 10.1111/jdv.16371] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Kasteleyn MJ, Versluis A, van Peet P, Kirk UB, van Dalfsen J, Meijer E, Honkoop P, Ho K, Chavannes NH, Talboom-Kamp EPWA. SERIES: eHealth in primary care. Part 5: A critical appraisal of five widely used eHealth applications for primary care - opportunities and challenges. Eur J Gen Pract 2021;27:248-56. [PMID: 34432601 DOI: 10.1080/13814788.2021.1962845] [Reference Citation Analysis]
8 Pacheco AGC, Lima GR, Salomão AS, Krohling B, Biral IP, de Angelo GG, Alves FCR Jr, Esgario JGM, Simora AC, Castro PBC, Rodrigues FB, Frasson PHL, Krohling RA, Knidel H, Santos MCS, do Espírito Santo RB, Macedo TLSG, Canuto TRP, de Barros LFS. PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones. Data Brief 2020;32:106221. [PMID: 32939378 DOI: 10.1016/j.dib.2020.106221] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
9 Blum A, Bosch S, Haenssle HA, Fink C, Hofmann-Wellenhof R, Zalaudek I, Kittler H, Tschandl P. [Artificial intelligence and smartphone program applications (Apps) : Relevance for dermatological practice]. Hautarzt 2020;71:691-8. [PMID: 32720165 DOI: 10.1007/s00105-020-04658-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Yates D, Islam MZ. Data Mining on Smartphones: An Introduction and Survey. ACM Comput Surv . [DOI: 10.1145/3529753] [Reference Citation Analysis]
11 Moawad GN, Elkhalil J, Klebanoff JS, Rahman S, Habib N, Alkatout I. Augmented Realities, Artificial Intelligence, and Machine Learning: Clinical Implications and How Technology Is Shaping the Future of Medicine. J Clin Med 2020;9:E3811. [PMID: 33255705 DOI: 10.3390/jcm9123811] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
12 Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, Jain A, Walter FM, Williams HC, Deeks JJ. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 2020;368:m127. [PMID: 32041693 DOI: 10.1136/bmj.m127] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 23.0] [Reference Citation Analysis]
13 Kuo K, Talley PC, Chang C. The Accuracy of Machine Learning Approaches Using Non-image Data for the Prediction of COVID-19: A Meta-Analysis. International Journal of Medical Informatics 2022. [DOI: 10.1016/j.ijmedinf.2022.104791] [Reference Citation Analysis]
14 Chan S, Reddy V, Myers B, Thibodeaux Q, Brownstone N, Liao W. Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations. Dermatol Ther (Heidelb) 2020;10:365-86. [PMID: 32253623 DOI: 10.1007/s13555-020-00372-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
15 Chin YPH, Hou ZY, Lee MY, Chu HM, Wang HH, Lin YT, Gittin A, Chien SC, Nguyen PA, Li LC, Chang TH, Li YCJ. A patient-oriented, general-practitioner-level, deep-learning-based cutaneous pigmented lesion risk classifier on a smartphone. Br J Dermatol 2020;182:1498-500. [PMID: 31907926 DOI: 10.1111/bjd.18859] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
16 Khan IU, Aslam N, Anwar T, Aljameel SS, Ullah M, Khan R, Rehman A, Akhtar N, Pan Y. Remote Diagnosis and Triaging Model for Skin Cancer Using EfficientNet and Extreme Gradient Boosting. Complexity 2021;2021:1-13. [DOI: 10.1155/2021/5591614] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ávila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela VJ. [Artificial intelligence and its applications in medicine II: Current importance and practical applications]. Aten Primaria 2021;53:81-8. [PMID: 32571595 DOI: 10.1016/j.aprim.2020.04.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Sangers TE, Nijsten T, Wakkee M. Mobile health skin cancer risk assessment campaign using artificial intelligence on a population-wide scale: a retrospective cohort analysis. J Eur Acad Dermatol Venereol 2021. [PMID: 34077573 DOI: 10.1111/jdv.17442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wen H, Yu W, Wu Y, Jun Z, Liu X, Kuang Z, Fan R. Acne detection and severity evaluation with interpretable convolutional neural network models. Technol Health Care 2022. [PMID: 35124592 DOI: 10.3233/THC-228014] [Reference Citation Analysis]