BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Longoni C, Bonezzi A, Morewedge CK. Resistance to Medical Artificial Intelligence. Journal of Consumer Research 2019;46:629-50. [DOI: 10.1093/jcr/ucz013] [Cited by in Crossref: 120] [Cited by in F6Publishing: 17] [Article Influence: 40.0] [Reference Citation Analysis]
Number Citing Articles
1 Collins C, Dennehy D, Conboy K, Mikalef P. Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management 2021;60:102383. [DOI: 10.1016/j.ijinfomgt.2021.102383] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 16.0] [Reference Citation Analysis]
2 Mogaji E, Nguyen NP. Managers' understanding of artificial intelligence in relation to marketing financial services: insights from a cross-country study. IJBM 2021;ahead-of-print. [DOI: 10.1108/ijbm-09-2021-0440] [Reference Citation Analysis]
3 Zhang Z, Chen Z, Xu L. Artificial intelligence and moral dilemmas: Perception of ethical decision-making in AI. Journal of Experimental Social Psychology 2022;101:104327. [DOI: 10.1016/j.jesp.2022.104327] [Reference Citation Analysis]
4 Kim JH, Kim M, Kwak DW, Lee S. Home-Tutoring Services Assisted with Technology: Investigating the Role of Artificial Intelligence Using a Randomized Field Experiment. Journal of Marketing Research 2022;59:79-96. [DOI: 10.1177/00222437211050351] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nozawa C, Togawa T, Velasco C, Motoki K. Consumer responses to the use of artificial intelligence in luxury and non-luxury restaurants. Food Quality and Preference 2022;96:104436. [DOI: 10.1016/j.foodqual.2021.104436] [Reference Citation Analysis]
6 Kim J, Giroux M, Lee JC. When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychology & Marketing 2021;38:1140-55. [DOI: 10.1002/mar.21498] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
7 Liu Y, Wang X, Wang S. Research on service robot adoption under different service scenarios. Technology in Society 2022;68:101810. [DOI: 10.1016/j.techsoc.2021.101810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kim T, Lee H, Kim MY, Kim S, Duhachek A. AI increases unethical consumer behavior due to reduced anticipatory guilt. J of the Acad Mark Sci . [DOI: 10.1007/s11747-021-00832-9] [Reference Citation Analysis]
9 Padigar M, Pupovac L, Sinha A, Srivastava R. The effect of marketing department power on investor responses to announcements of AI-embedded new product innovations. J of the Acad Mark Sci . [DOI: 10.1007/s11747-022-00873-8] [Reference Citation Analysis]
10 Bakpayev M, Baek TH, van Esch P, Yoon S. Programmatic creative: AI can think but it cannot feel. Australasian Marketing Journal 2022;30:90-5. [DOI: 10.1016/j.ausmj.2020.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wang Y, Kang Q, Zhou S, Dong Y, Liu J. The impact of service robots in retail: Exploring the effect of novelty priming on consumer behavior. Journal of Retailing and Consumer Services 2022;68:103002. [DOI: 10.1016/j.jretconser.2022.103002] [Reference Citation Analysis]
12 Giroux M, Kim J, Lee JC, Park J. Artificial Intelligence and Declined Guilt: Retailing Morality Comparison Between Human and AI. J Bus Ethics. [DOI: 10.1007/s10551-022-05056-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Beeler L, Zablah AR, Rapp A. Ability is in the eye of the beholder: How context and individual factors shape consumer perceptions of digital assistant ability. Journal of Business Research 2022;148:33-46. [DOI: 10.1016/j.jbusres.2022.04.045] [Reference Citation Analysis]
14 de Bellis E, Venkataramani Johar G. Autonomous Shopping Systems: Identifying and Overcoming Barriers to Consumer Adoption. Journal of Retailing 2020;96:74-87. [DOI: 10.1016/j.jretai.2019.12.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 4] [Article Influence: 19.0] [Reference Citation Analysis]
15 Jiang H, Xu M, Sun P, Zhang J. Humanoid service robots versus human employee: how consumers react to functionally and culturally mixed products. IJOEM 2021. [DOI: 10.1108/ijoem-04-2021-0643] [Reference Citation Analysis]
16 Aristidou A, Jena R, Topol EJ. Bridging the chasm between AI and clinical implementation. The Lancet 2022;399:620. [DOI: 10.1016/s0140-6736(22)00235-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Maasland C, Weißmüller KS. Blame the Machine? Insights From an Experiment on Algorithm Aversion and Blame Avoidance in Computer-Aided Human Resource Management. Front Psychol 2022;13:779028. [DOI: 10.3389/fpsyg.2022.779028] [Reference Citation Analysis]
18 Kipnis E, Mcleay F, Grimes A, de Saille S, Potter S. Service Robots in Long-Term Care: A Consumer-Centric View. Journal of Service Research. [DOI: 10.1177/10946705221110849] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ostherr K. Artificial Intelligence and Medical Humanities. J Med Humanit 2020. [PMID: 32654043 DOI: 10.1007/s10912-020-09636-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
20 Langer M, König CJ, Busch V. Changing the means of managerial work: effects of automated decision support systems on personnel selection tasks. J Bus Psychol 2021;36:751-69. [DOI: 10.1007/s10869-020-09711-6] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 De Keyser A, Kunz WH. Living and working with service robots: a TCCM analysis and considerations for future research. JOSM 2022;33:165-96. [DOI: 10.1108/josm-12-2021-0488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sokol LL, Hauser JM, Lum HD, Forlizzi J, Cerf M, Caprio FZ, Young MJ. Goal-Concordant Care in the Era of Advanced Stroke Therapies. J Palliat Med 2021;24:297-301. [PMID: 32407220 DOI: 10.1089/jpm.2019.0667] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Andrew Petersen J, Paulich BJ, Khodakarami F, Spyropoulou S, Kumar V. Customer-based execution strategy in a global digital economy. International Journal of Research in Marketing 2021. [DOI: 10.1016/j.ijresmar.2021.09.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Yousefi Nooraie R, Lyons PG, Baumann AA, Saboury B. Equitable Implementation of Artificial Intelligence in Medical Imaging: What Can be Learned from Implementation Science? PET Clin 2021;16:643-53. [PMID: 34537134 DOI: 10.1016/j.cpet.2021.07.002] [Reference Citation Analysis]
25 Jeon Y“. Let me transfer you to our AI-based manager: Impact of manager-level job titles assigned to AI-based agents on marketing outcomes. Journal of Business Research 2022;145:892-904. [DOI: 10.1016/j.jbusres.2022.03.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Le KBQ, Sajtos L, Fernandez KV. Employee-(ro)bot collaboration in service: an interdependence perspective. JOSM 2022. [DOI: 10.1108/josm-06-2021-0232] [Reference Citation Analysis]
27 Zhang L, Pentina I, Fan Y. Who do you choose? Comparing perceptions of human vs robo-advisor in the context of financial services. JSM 2021;35:634-46. [DOI: 10.1108/jsm-05-2020-0162] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Frank B, Herbas-torrico B, Schvaneveldt SJ. The AI-extended consumer: Technology, consumer, country differences in the formation of demand for AI-empowered consumer products. Technological Forecasting and Social Change 2021;172:121018. [DOI: 10.1016/j.techfore.2021.121018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Pethig F, Kroenung J. Biased Humans, (Un)Biased Algorithms? J Bus Ethics. [DOI: 10.1007/s10551-022-05071-8] [Reference Citation Analysis]
30 Kirshner SN, Moritz BB. Measuring demand chasing behavior. Decision Sciences 2021;52:1264-81. [DOI: 10.1111/deci.12518] [Reference Citation Analysis]
31 Cheng X, Bao Y, Zarifis A, Gong W, Mou J. Exploring consumers' response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure. INTR 2021;ahead-of-print. [DOI: 10.1108/intr-08-2020-0460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Dietvorst BJ, Bartels DM. Consumers Object to Algorithms Making Morally Relevant Tradeoffs Because of Algorithms’ Consequentialist Decision Strategies. J Consum Psychol. [DOI: 10.1002/jcpy.1266] [Reference Citation Analysis]
33 Silver I, Newman G, Small DA. Inauthenticity aversion: Moral reactance toward tainted actors, actions, and objects. Consum Psychol Rev 2021;4:70-82. [DOI: 10.1002/arcp.1064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Lv L, Huang M, Huang R. Anthropomorphize service robots: the role of human nature traits. The Service Industries Journal. [DOI: 10.1080/02642069.2022.2048821] [Reference Citation Analysis]
35 Niessen ASM, Kausel EE, Neumann M. Using narratives and numbers in performance prediction: Attitudes, confidence, and validity. Int J Selection Assessment. [DOI: 10.1111/ijsa.12364] [Reference Citation Analysis]
36 Wien AH, Peluso AM. Influence of human versus AI recommenders: The roles of product type and cognitive processes. Journal of Business Research 2021;137:13-27. [DOI: 10.1016/j.jbusres.2021.08.016] [Reference Citation Analysis]
37 Luo X, Qin MS, Fang Z, Qu Z. Artificial Intelligence Coaches for Sales Agents: Caveats and Solutions. Journal of Marketing 2021;85:14-32. [DOI: 10.1177/0022242920956676] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
38 Tomprou M, Lee MK. Employment relationships in algorithmic management: A psychological contract perspective. Computers in Human Behavior 2022;126:106997. [DOI: 10.1016/j.chb.2021.106997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
39 Berger B, Adam M, Rühr A, Benlian A. Watch Me Improve—Algorithm Aversion and Demonstrating the Ability to Learn. Bus Inf Syst Eng 2021;63:55-68. [DOI: 10.1007/s12599-020-00678-5] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Yang C, Hu J. When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions. J Brand Manag 2022;29:167-89. [DOI: 10.1057/s41262-021-00261-7] [Reference Citation Analysis]
41 Formosa P, Rogers W, Bankins S, Griep Y, Richards D. Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts. Computers in Human Behavior 2022. [DOI: 10.1016/j.chb.2022.107296] [Reference Citation Analysis]
42 Yokoi R, Nakayachi K. The Effect of Value Similarity on Trust in the Automation Systems: A Case of Transportation and Medical Care. International Journal of Human–Computer Interaction 2021;37:1269-82. [DOI: 10.1080/10447318.2021.1876360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Yun JH, Lee E, Kim DH. Behavioral and neural evidence on consumer responses to human doctors and medical artificial intelligence. Psychology & Marketing 2021;38:610-25. [DOI: 10.1002/mar.21445] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
44 Loncaric F, Camara O, Piella G, Bijnens B. La integración de la inteligencia artificial en el abordaje clínico del paciente: enfoque en la imagen cardiaca. Revista Española de Cardiología 2021;74:72-80. [DOI: 10.1016/j.recesp.2020.07.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
45 Han J, Broniarczyk S. The Complexities of Consumer Empowerment in the Modern Consumption Environment. Current Opinion in Psychology 2022. [DOI: 10.1016/j.copsyc.2022.101333] [Reference Citation Analysis]
46 Langer M, Oster D, Speith T, Hermanns H, Kästner L, Schmidt E, Sesing A, Baum K. What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence 2021;296:103473. [DOI: 10.1016/j.artint.2021.103473] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 20.0] [Reference Citation Analysis]
47 Hou Y, Zhang K, Li G. Service robots or human staff: How social crowding shapes tourist preferences. Tourism Management 2021;83:104242. [DOI: 10.1016/j.tourman.2020.104242] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
48 Wu H, Zhou L, Ali F, Chen J, Niu M, Hu J. The impacts of electronic versus waiter ordering on consumer's healthy food choice. Psychology and Marketing 2022;39:1156-69. [DOI: 10.1002/mar.21653] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Alabed A, Javornik A, Gregory-smith D. AI anthropomorphism and its effect on users' self-congruence and self–AI integration: A theoretical framework and research agenda. Technological Forecasting and Social Change 2022;182:121786. [DOI: 10.1016/j.techfore.2022.121786] [Reference Citation Analysis]
50 Yokoi R, Eguchi Y, Fujita T, Nakayachi K. Artificial Intelligence Is Trusted Less than a Doctor in Medical Treatment Decisions: Influence of Perceived Care and Value Similarity. International Journal of Human–Computer Interaction 2021;37:981-90. [DOI: 10.1080/10447318.2020.1861763] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Yang D, (Will) Zhao WG, Du J, Yang Y. Approaching Artificial Intelligence in business and economics research:a bibliometric panorama (1966–2020). Technology Analysis & Strategic Management. [DOI: 10.1080/09537325.2022.2043268] [Reference Citation Analysis]
52 Larkin C, Drummond Otten C, Árvai J. Paging Dr. JARVIS! Will people accept advice from artificial intelligence for consequential risk management decisions? Journal of Risk Research. [DOI: 10.1080/13669877.2021.1958047] [Reference Citation Analysis]
53 Sung E(, Bae S, Han DD, Kwon O. Consumer engagement via interactive artificial intelligence and mixed reality. International Journal of Information Management 2021;60:102382. [DOI: 10.1016/j.ijinfomgt.2021.102382] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
54 Grewal D, Guha A, Satornino CB, Schweiger EB. Artificial intelligence: The light and the darkness. Journal of Business Research 2021;136:229-36. [DOI: 10.1016/j.jbusres.2021.07.043] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
55 Kumar S, Miller EG, Mende M, Scott ML. Language matters: humanizing service robots through the use of language during the COVID-19 pandemic. Mark Lett. [DOI: 10.1007/s11002-022-09630-x] [Reference Citation Analysis]
56 Huang M, Rust RT. A strategic framework for artificial intelligence in marketing. J of the Acad Mark Sci 2021;49:30-50. [DOI: 10.1007/s11747-020-00749-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 7] [Article Influence: 21.5] [Reference Citation Analysis]
57 Borau S, Otterbring T, Laporte S, Fosso Wamba S. The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychology & Marketing 2021;38:1052-68. [DOI: 10.1002/mar.21480] [Cited by in Crossref: 7] [Article Influence: 7.0] [Reference Citation Analysis]
58 Ameen N, Sharma GD, Tarba S, Rao A, Chopra R. Toward advancing theory on creativity in marketing and artificial intelligence. Psychology and Marketing. [DOI: 10.1002/mar.21699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bigman YE, Yam KC, Marciano D, Reynolds SJ, Gray K. Threat of racial and economic inequality increases preference for algorithm decision-making. Computers in Human Behavior 2021;122:106859. [DOI: 10.1016/j.chb.2021.106859] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Coughlan JJ, Mullins CF, Kiernan TJ. Diagnosing, fast and slow. Postgrad Med J 2021;97:103-9. [PMID: 32595113 DOI: 10.1136/postgradmedj-2019-137412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Castelo N, Bos MW, Lehmann DR. Task-Dependent Algorithm Aversion. Journal of Marketing Research 2019;56:809-25. [DOI: 10.1177/0022243719851788] [Cited by in Crossref: 102] [Cited by in F6Publishing: 32] [Article Influence: 34.0] [Reference Citation Analysis]
62 Kochav SM, Raita Y, Fifer MA, Takayama H, Ginns J, Maurer MS, Reilly MP, Hasegawa K, Shimada YJ. Predicting the development of adverse cardiac events in patients with hypertrophic cardiomyopathy using machine learning. Int J Cardiol 2021;327:117-24. [PMID: 33181159 DOI: 10.1016/j.ijcard.2020.11.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 Henkel AP, Čaić M, Blaurock M, Okan M. Robotic transformative service research: deploying social robots for consumer well-being during COVID-19 and beyond. JOSM 2020;31:1131-48. [DOI: 10.1108/josm-05-2020-0145] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
64 Gupta S, Kattapuram TM, Patel TY. Social media's role in the perception of radiologists and artificial intelligence. Clinical Imaging 2020;68:158-60. [DOI: 10.1016/j.clinimag.2020.06.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Schweidel DA, Bart Y, Inman JJ, Stephen AT, Libai B, Andrews M, Rosario AB, Chae I, Chen Z, Kupor D, Longoni C, Thomaz F. How consumer digital signals are reshaping the customer journey. J of the Acad Mark Sci . [DOI: 10.1007/s11747-022-00839-w] [Reference Citation Analysis]
66 Weinert L, Müller J, Svensson L, Heinze O. The perspective of IT decision makers on factors influencing adoption and implementation of AI-technologies in 40 German Hospitals: Descriptive Analysis (Preprint). JMIR Medical Informatics. [DOI: 10.2196/34678] [Reference Citation Analysis]
67 Tassiello V, Tillotson JS, Rome AS. “Alexa, order me a pizza!”: The mediating role of psychological power in the consumer–voice assistant interaction. Psychology & Marketing 2021;38:1069-80. [DOI: 10.1002/mar.21488] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Peng C, van Doorn J, Eggers F, Wieringa JE. The effect of required warmth on consumer acceptance of artificial intelligence in service: The moderating role of AI-human collaboration. International Journal of Information Management 2022;66:102533. [DOI: 10.1016/j.ijinfomgt.2022.102533] [Reference Citation Analysis]
69 Hamilton R, Ferraro R, Haws KL, Mukhopadhyay A. Traveling with Companions: The Social Customer Journey. Journal of Marketing 2021;85:68-92. [DOI: 10.1177/0022242920908227] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 7.5] [Reference Citation Analysis]
70 Jago AS, Laurin K. Assumptions About Algorithms' Capacity for Discrimination. Pers Soc Psychol Bull 2021;:1461672211016187. [PMID: 34044648 DOI: 10.1177/01461672211016187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Polman E, Ziano I, Wu K, Van Kerckhove A, Kirmani A, Wood S, Moore SG. Consumers Believe That Products Work Better for Others. Journal of Consumer Research 2021. [DOI: 10.1093/jcr/ucab048] [Reference Citation Analysis]
72 Northey G, Hunter V, Mulcahy R, Choong K, Mehmet M. Man vs machine: how artificial intelligence in banking influences consumer belief in financial advice. IJBM 2022. [DOI: 10.1108/ijbm-09-2021-0439] [Reference Citation Analysis]
73 Le H, Jia J. Design and implementation of an intelligent tutoring system in the view of learner autonomy. ITSE 2022. [DOI: 10.1108/itse-12-2021-0210] [Reference Citation Analysis]
74 Candrian C, Scherer A. Rise of the machines: Delegating decisions to autonomous AI. Computers in Human Behavior 2022. [DOI: 10.1016/j.chb.2022.107308] [Reference Citation Analysis]
75 Wang L, Huang N, Hong Y, Liu L, Guo X, Chen G. Voice-Based AI in Call Center Customer Service: Evidence from a Field Experiment. SSRN Journal. [DOI: 10.2139/ssrn.3633100] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
76 Grewal D, Roggeveen AL. Understanding Retail Experiences and Customer Journey Management. Journal of Retailing 2020;96:3-8. [DOI: 10.1016/j.jretai.2020.02.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 7] [Article Influence: 22.0] [Reference Citation Analysis]
77 Langer M, König CJ, Back C, Hemsing V. Trust in Artificial Intelligence: Comparing Trust Processes Between Human and Automated Trustees in Light of Unfair Bias. J Bus Psychol. [DOI: 10.1007/s10869-022-09829-9] [Reference Citation Analysis]
78 Zicari RV, Ahmed S, Amann J, Braun SA, Brodersen J, Bruneault F, Brusseau J, Campano E, Coffee M, Dengel A, Düdder B, Gallucci A, Gilbert TK, Gottfrois P, Goffi E, Haase CB, Hagendorff T, Hickman E, Hildt E, Holm S, Kringen P, Kühne U, Lucieri A, Madai VI, Moreno-sánchez PA, Medlicott O, Ozols M, Schnebel E, Spezzatti A, Tithi JJ, Umbrello S, Vetter D, Volland H, Westerlund M, Wurth R. Co-Design of a Trustworthy AI System in Healthcare: Deep Learning Based Skin Lesion Classifier. Front Hum Dyn 2021;3:688152. [DOI: 10.3389/fhumd.2021.688152] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
79 Chugunova M, Sele D. An interdisciplinary review of the experimental evidence on how humans interact with machines. Journal of Behavioral and Experimental Economics 2022. [DOI: 10.1016/j.socec.2022.101897] [Reference Citation Analysis]
80 Dekimpe MG. Retailing and retailing research in the age of big data analytics. International Journal of Research in Marketing 2020;37:3-14. [DOI: 10.1016/j.ijresmar.2019.09.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 17.0] [Reference Citation Analysis]
81 Esmaeilzadeh H, Vaezi R. Conscious Empathic AI in Service. Journal of Service Research. [DOI: 10.1177/10946705221103531] [Reference Citation Analysis]
82 Hah H, Goldin DS. How Clinicians Perceive Artificial Intelligence-Assisted Technologies in Diagnostic Decision Making: Mixed Methods Approach. J Med Internet Res 2021;23:e33540. [PMID: 34924356 DOI: 10.2196/33540] [Reference Citation Analysis]
83 Granulo A, Fuchs C, Puntoni S. Preference for Human (vs. Robotic) Labor is Stronger in Symbolic Consumption Contexts. J Consum Psychol 2021;31:72-80. [DOI: 10.1002/jcpy.1181] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
84 Otaki Y, Singh A, Kavanagh P, Miller RJH, Parekh T, Tamarappoo BK, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Cadet S, Liang JX, Dey D, Berman DS, Slomka PJ. Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC Cardiovasc Imaging 2021:S1936-878X(21)00438-1. [PMID: 34274267 DOI: 10.1016/j.jcmg.2021.04.030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
85 Esmaeilzadeh P, Mirzaei T, Dharanikota S. Patients' Perceptions Toward Human-Artificial Intelligence Interaction in Health Care: Experimental Study. J Med Internet Res 2021;23:e25856. [PMID: 34842535 DOI: 10.2196/25856] [Reference Citation Analysis]
86 Palmisciano P, Jamjoom AAB, Taylor D, Stoyanov D, Marcus HJ. Attitudes of Patients and Their Relatives Toward Artificial Intelligence in Neurosurgery. World Neurosurg 2020;138:e627-33. [PMID: 32179185 DOI: 10.1016/j.wneu.2020.03.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
87 Xu L, Mehta R. Technology devalues luxury? Exploring consumer responses to AI-designed luxury products. J of the Acad Mark Sci . [DOI: 10.1007/s11747-022-00854-x] [Reference Citation Analysis]
88 Kim T, Song H. How should intelligent agents apologize to restore trust? Interaction effects between anthropomorphism and apology attribution on trust repair. Telematics and Informatics 2021;61:101595. [DOI: 10.1016/j.tele.2021.101595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
89 Yalcin G, Themeli E, Stamhuis E, Philipsen S, Puntoni S. Perceptions of Justice By Algorithms. Artif Intell Law. [DOI: 10.1007/s10506-022-09312-z] [Reference Citation Analysis]
90 Morgan C, Townsend C. Why the Drive: The Utilitarian and Hedonic Benefits of Self-Expression Through Consumption. Current Opinion in Psychology 2022. [DOI: 10.1016/j.copsyc.2022.101320] [Reference Citation Analysis]
91 Gelbrich K, Hagel J, Orsingher C. Emotional support from a digital assistant in technology-mediated services: Effects on customer satisfaction and behavioral persistence. International Journal of Research in Marketing 2021;38:176-93. [DOI: 10.1016/j.ijresmar.2020.06.004] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
92 König H, Frank D, Baumann M, Heil R. AI models and the future of genomic research and medicine: True sons of knowledge?: Artificial intelligence needs to be integrated with causal conceptions in biomedicine to harness its societal benefits for the field. Bioessays 2021;:e2100025. [PMID: 34382215 DOI: 10.1002/bies.202100025] [Reference Citation Analysis]
93 Kopalle PK, Gangwar M, Kaplan A, Ramachandran D, Reinartz W, Rindfleisch A. Examining artificial intelligence (AI) technologies in marketing via a global lens: Current trends and future research opportunities. International Journal of Research in Marketing 2021. [DOI: 10.1016/j.ijresmar.2021.11.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
94 Tong S, Jia N, Luo X, Fang Z. The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strat Mgmt J 2021;42:1600-31. [DOI: 10.1002/smj.3322] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Berger J, Humphreys A, Ludwig S, Moe WW, Netzer O, Schweidel DA. Uniting the Tribes: Using Text for Marketing Insight. Journal of Marketing 2020;84:1-25. [DOI: 10.1177/0022242919873106] [Cited by in Crossref: 122] [Cited by in F6Publishing: 4] [Article Influence: 40.7] [Reference Citation Analysis]
96 Hadjielias E, (Lola) Dada O, Discua Cruz A, Zekas S, Christofi M, Sakka G. How do digital innovation teams function? Understanding the team cognition-process nexus within the context of digital transformation. Journal of Business Research 2021;122:373-86. [DOI: 10.1016/j.jbusres.2020.08.045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 16.0] [Reference Citation Analysis]
97 Park Y, Yi Y. Is a gift on sale “heart-discounted”? Givers’ misprediction on the value of discounted gifts and the influence of service robots. Journal of Retailing and Consumer Services 2022;65:102489. [DOI: 10.1016/j.jretconser.2021.102489] [Reference Citation Analysis]
98 Kim H, So KKF, Wirtz J. Service robots: Applying social exchange theory to better understand human–robot interactions. Tourism Management 2022;92:104537. [DOI: 10.1016/j.tourman.2022.104537] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Vlačić B, Corbo L, Costa e Silva S, Dabić M. The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research 2021;128:187-203. [DOI: 10.1016/j.jbusres.2021.01.055] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 34.0] [Reference Citation Analysis]
100 De Bruyn A, Viswanathan V, Beh YS, Brock JK, von Wangenheim F. Artificial Intelligence and Marketing: Pitfalls and Opportunities. Journal of Interactive Marketing 2020;51:91-105. [DOI: 10.1016/j.intmar.2020.04.007] [Cited by in Crossref: 33] [Article Influence: 16.5] [Reference Citation Analysis]
101 Daschner S, Obermaier R. Algorithm aversion? On the influence of advice accuracy on trust in algorithmic advice. Journal of Decision Systems. [DOI: 10.1080/12460125.2022.2070951] [Reference Citation Analysis]
102 Chen N, Mohanty S, Jiao J, Fan X. To err is human: Tolerate humans instead of machines in service failure. Journal of Retailing and Consumer Services 2021;59:102363. [DOI: 10.1016/j.jretconser.2020.102363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
103 Vu HT, Lim J. Effects of country and individual factors on public acceptance of artificial intelligence and robotics technologies: a multilevel SEM analysis of 28-country survey data. Behaviour & Information Technology 2022;41:1515-28. [DOI: 10.1080/0144929x.2021.1884288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
104 Söderlund M, Oikarinen E. Service encounters with virtual agents: an examination of perceived humanness as a source of customer satisfaction. EJM 2021;55:94-121. [DOI: 10.1108/ejm-09-2019-0748] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
105 Huang D, Jin X, Coghlan A. Advances in consumer innovation resistance research: A review and research agenda. Technological Forecasting and Social Change 2021;166:120594. [DOI: 10.1016/j.techfore.2021.120594] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
106 Gill T, Fischer E, Kirmani A, Aggarwal P. Blame It on the Self-Driving Car: How Autonomous Vehicles Can Alter Consumer Morality. Journal of Consumer Research 2020;47:272-91. [DOI: 10.1093/jcr/ucaa018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
107 Jussupow E, Spohrer K, Heinzl A, Gawlitza J. Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence. Information Systems Research 2021;32:713-35. [DOI: 10.1287/isre.2020.0980] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
108 Grandinetti R. . Innovative Marketing 2020;16:91-103. [DOI: 10.21511/im.16(2).2020.08] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhou Y, Fei Z, He Y, Yang Z. How Human–Chatbot Interaction Impairs Charitable Giving: The Role of Moral Judgment. J Bus Ethics. [DOI: 10.1007/s10551-022-05045-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Dicuonzo G, Donofrio F, Fusco A, Shini M. Healthcare system: Moving forward with artificial intelligence. Technovation 2022. [DOI: 10.1016/j.technovation.2022.102510] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 You S, Yang CL, Li X. Algorithmic versus Human Advice: Does Presenting Prediction Performance Matter for Algorithm Appreciation? Journal of Management Information Systems 2022;39:336-65. [DOI: 10.1080/07421222.2022.2063553] [Reference Citation Analysis]
112 Longoni C, Cian L. Artificial Intelligence in Utilitarian vs. Hedonic Contexts: The “Word-of-Machine” Effect. Journal of Marketing 2022;86:91-108. [DOI: 10.1177/0022242920957347] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 10.5] [Reference Citation Analysis]
113 Rindfleisch A, Mehta R, Sachdev V, Danienta N. Innovation Research Themes for Our Changing Environment: Insights from the 2019 PDMA Doctoral Consortium. J Prod Innov Manag 2020;37:126-37. [DOI: 10.1111/jpim.12518] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
114 Keegan BJ, Canhoto AI, Yen DA. Power negotiation on the tango dancefloor: The adoption of AI in B2B marketing. Industrial Marketing Management 2022;100:36-48. [DOI: 10.1016/j.indmarman.2021.11.001] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
115 Huang M, Rust RT. A Framework for Collaborative Artificial Intelligence in Marketing. Journal of Retailing 2021. [DOI: 10.1016/j.jretai.2021.03.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 16.0] [Reference Citation Analysis]
116 Langer M, Landers RN. The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers. Computers in Human Behavior 2021;123:106878. [DOI: 10.1016/j.chb.2021.106878] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
117 Chacon A, Kausel EE, Reyes T. A longitudinal approach for understanding algorithm use. Behavioral Decision Making. [DOI: 10.1002/bdm.2275] [Reference Citation Analysis]
118 Esch PV, Cui Y(, Jain SP. Stimulating or Intimidating: The Effect of AI-Enabled In-Store Communication on Consumer Patronage Likelihood. Journal of Advertising 2021;50:63-80. [DOI: 10.1080/00913367.2020.1832939] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
119 Sanida T, Sideris A, Tsiktsiris D, Dasygenis M. Lightweight Neural Network for COVID-19 Detection from Chest X-ray Images Implemented on an Embedded System. Technologies 2022;10:37. [DOI: 10.3390/technologies10020037] [Reference Citation Analysis]
120 Weihrauch A, Huang S. Portraying Humans as Machines to Promote Health: Unintended Risks, Mechanisms, and Solutions. Journal of Marketing 2021;85:184-203. [DOI: 10.1177/0022242920974986] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
121 Zhang L, Yencha C. Examining perceptions towards hiring algorithms. Technology in Society 2022;68:101848. [DOI: 10.1016/j.techsoc.2021.101848] [Reference Citation Analysis]
122 Huo W, Zheng G, Yan J, Le S, Han L. Interacting with medical artificial intelligence: Integrating self-responsibility attribution, human–computer trust, and personality. Computers in Human Behavior 2022. [DOI: 10.1016/j.chb.2022.107253] [Reference Citation Analysis]
123 Gaczek P, Leszczyński G, Zieliński M. Is AI Augmenting or Substituting Humans?: An Eye-Tracking Study of Visual Attention Toward Health Application. International Journal of Technology and Human Interaction 2022;18:1-14. [DOI: 10.4018/ijthi.293193] [Reference Citation Analysis]
124 Jussupow E, Spohrer K, Heinzl A. Radiologists’ Usage of Diagnostic AI Systems: The Role of Diagnostic Self-Efficacy for Sensemaking from Confirmation and Disconfirmation. Bus Inf Syst Eng. [DOI: 10.1007/s12599-022-00750-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Loncaric F, Camara O, Piella G, Bijnens B. Integration of artificial intelligence into clinical patient management: focus on cardiac imaging. Rev Esp Cardiol (Engl Ed) 2021;74:72-80. [PMID: 32819849 DOI: 10.1016/j.rec.2020.07.003] [Reference Citation Analysis]
126 Neumann M, Niessen ASM, Tendeiro JN, Meijer RR. The autonomy‐validity dilemma in mechanical prediction procedures: The quest for a compromise. J Behav Dec Making. [DOI: 10.1002/bdm.2270] [Reference Citation Analysis]
127 Sun N, Botev J. Intelligent autonomous agents and trust in virtual reality. Computers in Human Behavior Reports 2021;4:100146. [DOI: 10.1016/j.chbr.2021.100146] [Reference Citation Analysis]
128 Chung D, Kim H, Ahn S. An Integrated Study of User Acceptance and Resistance on Voice Commerce. Int J Innovation Technol Management. [DOI: 10.1142/s0219877022500250] [Reference Citation Analysis]
129 Suarez-Ibarrola R, Sigle A, Eklund M, Eberli D, Miernik A, Benndorf M, Bamberg F, Gratzke C. Artificial Intelligence in Magnetic Resonance Imaging-based Prostate Cancer Diagnosis: Where Do We Stand in 2021? Eur Urol Focus 2021:S2405-4569(21)00099-7. [PMID: 33773964 DOI: 10.1016/j.euf.2021.03.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
130 Davenport T, Guha A, Grewal D, Bressgott T. How artificial intelligence will change the future of marketing. J of the Acad Mark Sci 2020;48:24-42. [DOI: 10.1007/s11747-019-00696-0] [Cited by in Crossref: 184] [Cited by in F6Publishing: 5] [Article Influence: 61.3] [Reference Citation Analysis]
131 Xiao Y. Application of Neural Network Algorithm in Medical Artificial Intelligence Product Development. Comput Math Methods Med 2022;2022:5413202. [PMID: 35720034 DOI: 10.1155/2022/5413202] [Reference Citation Analysis]
132 Li X, Sung Y. Anthropomorphism brings us closer: The mediating role of psychological distance in User–AI assistant interactions. Computers in Human Behavior 2021;118:106680. [DOI: 10.1016/j.chb.2021.106680] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
133 Ozuem W, Willis M, Howell K, Lancaster G, Ng R. Determinants of online brand communities’ and millennials’ characteristics: A social influence perspective. Psychol Mark 2021;38:794-818. [DOI: 10.1002/mar.21470] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
134 Li W, Zhou X, Yang Q. Designing medical artificial intelligence for in- and out-groups. Computers in Human Behavior 2021;124:106929. [DOI: 10.1016/j.chb.2021.106929] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
135 Khanijahani A, Iezadi S, Dudley S, Goettler M, Kroetsch P, Wise J. Organizational, professional, and patient characteristics associated with artificial intelligence adoption in healthcare: A systematic review. Health Policy and Technology 2022. [DOI: 10.1016/j.hlpt.2022.100602] [Reference Citation Analysis]
136 Wilson BS, Tucci DL, Moses DA, Chang EF, Young NM, Zeng FG, Lesica NA, Bur AM, Kavookjian H, Mussatto C, Penn J, Goodwin S, Kraft S, Wang G, Cohen JM, Ginsburg GS, Dawson G, Francis HW. Harnessing the Power of Artificial Intelligence in Otolaryngology and the Communication Sciences. J Assoc Res Otolaryngol 2022. [PMID: 35441936 DOI: 10.1007/s10162-022-00846-2] [Reference Citation Analysis]
137 Findley J, Woods A, Robertson C, Slepian M. Keeping the Patient at the Center of Machine Learning in Healthcare. Am J Bioeth 2020;20:54-6. [PMID: 33103979 DOI: 10.1080/15265161.2020.1820100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Campbell MC, Price LL. Three Themes for the Future of Brands in a Changing Consumer Marketplace. Journal of Consumer Research 2021;48:517-26. [DOI: 10.1093/jcr/ucab060] [Reference Citation Analysis]
139 Choi S, Mattila AS, Bolton LE. To Err Is Human(-oid): How Do Consumers React to Robot Service Failure and Recovery? Journal of Service Research 2021;24:354-71. [DOI: 10.1177/1094670520978798] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
140 von Walter B, Kremmel D, Jäger B. The impact of lay beliefs about AI on adoption of algorithmic advice. Mark Lett. [DOI: 10.1007/s11002-021-09589-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]