BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Russell DG, Mwandumba HC, Rhoades EE. Mycobacterium and the coat of many lipids. J Cell Biol 2002;158:421-6. [PMID: 12147678 DOI: 10.1083/jcb.200205034] [Cited by in Crossref: 118] [Cited by in F6Publishing: 116] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Silva TRMD, Petersen ALDOA, Santos TDA, Almeida TFD, Freitas LARD, Veras PST. Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice. Mem Inst Oswaldo Cruz 2010;105:642-8. [DOI: 10.1590/s0074-02762010000500007] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
2 Genoula M, Marín Franco JL, Maio M, Dolotowicz B, Ferreyra M, Milillo MA, Mascarau R, Moraña EJ, Palmero D, Matteo M, Fuentes F, López B, Barrionuevo P, Neyrolles O, Cougoule C, Lugo-Villarino G, Vérollet C, Sasiain MDC, Balboa L. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathog 2020;16:e1008929. [PMID: 33002063 DOI: 10.1371/journal.ppat.1008929] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
3 Lloyd-Evans E, Platt FM. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 2010;11:419-28. [PMID: 20059748 DOI: 10.1111/j.1600-0854.2010.01032.x] [Cited by in Crossref: 135] [Cited by in F6Publishing: 128] [Article Influence: 11.3] [Reference Citation Analysis]
4 Mahfoud M, Sukumaran S, Hülsmann P, Grieger K, Niederweis M. Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis. J Biol Chem 2006;281:5908-15. [PMID: 16352610 DOI: 10.1074/jbc.M511642200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
5 Saxena P, Yadav G, Mohanty D, Gokhale RS. A new family of type III polyketide synthases in Mycobacterium tuberculosis. J Biol Chem 2003;278:44780-90. [PMID: 12941968 DOI: 10.1074/jbc.M306714200] [Cited by in Crossref: 80] [Cited by in F6Publishing: 29] [Article Influence: 4.2] [Reference Citation Analysis]
6 Vergne I, Chua J, Deretic V. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic. 2003;4:600-606. [PMID: 12911814 DOI: 10.1034/j.1600-0854.2003.00120.x] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 4.5] [Reference Citation Analysis]
7 Schlesinger LS, Azad AK, Torrelles JB, Roberts E, Vergne I, Deretic V. Determinants of Phagocytosis, Phagosome Biogenesis and Autophagy for Mycobacterium tuberculosis. In: Kaufmann SHE, Rubin E, Britton WJ, van Helden P, editors. Handbook of Tuberculosis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. pp. 1-22. [DOI: 10.1002/9783527611614.ch18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
8 Morita YS, Patterson JH, Billman-Jacobe H, McConville MJ. Biosynthesis of mycobacterial phosphatidylinositol mannosides. Biochem J 2004;378:589-97. [PMID: 14627436 DOI: 10.1042/BJ20031372] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 3.8] [Reference Citation Analysis]
9 Liu X, Tiwari RK, Geliebter J, Wu JM, Godfrey HP. Interaction of a Mycobacterium tuberculosis repetitive DNA sequence with eukaryotic proteins. Biochem Biophys Res Commun 2004;320:966-72. [PMID: 15240143 DOI: 10.1016/j.bbrc.2004.06.046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
10 Michelet X, Tuli A, Gan H, Geadas C, Sharma M, Remold HG, Brenner MB. Lysosome-Mediated Plasma Membrane Repair Is Dependent on the Small GTPase Arl8b and Determines Cell Death Type in Mycobacterium tuberculosis Infection. J Immunol 2018;200:3160-9. [PMID: 29592961 DOI: 10.4049/jimmunol.1700829] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
11 Brown SA, Palmer KL, Whiteley M. Revisiting the host as a growth medium. Nat Rev Microbiol 2008;6:657-66. [PMID: 18679171 DOI: 10.1038/nrmicro1955] [Cited by in Crossref: 136] [Cited by in F6Publishing: 114] [Article Influence: 10.5] [Reference Citation Analysis]
12 Rocha-Ramírez LM, Estrada-García I, López-Marín LM, Segura-Salinas E, Méndez-Aragón P, Van Soolingen D, Torres-González R, Chacón-Salinas R, Estrada-Parra S, Maldonado-Bernal C, López-Macías C, Isibasi A. Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis (Edinb) 2008;88:212-20. [PMID: 18222732 DOI: 10.1016/j.tube.2007.10.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 3.9] [Reference Citation Analysis]
13 Maeda N, Nigou J, Herrmann JL, Jackson M, Amara A, Lagrange PH, Puzo G, Gicquel B, Neyrolles O. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem. 2003;278:5513-5516. [PMID: 12496255 DOI: 10.1074/jbc.c200586200] [Cited by in Crossref: 183] [Cited by in F6Publishing: 71] [Article Influence: 9.2] [Reference Citation Analysis]
14 Haites RE, Morita YS, McConville MJ, Billman-Jacobe H. Function of phosphatidylinositol in mycobacteria. J Biol Chem 2005;280:10981-7. [PMID: 15634688 DOI: 10.1074/jbc.M413443200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
15 Cho D, Collins MT. Comparison of the proteosomes and antigenicities of secreted and cellular proteins produced by Mycobacterium paratuberculosis. Clin Vaccine Immunol 2006;13:1155-61. [PMID: 17028217 DOI: 10.1128/CVI.00058-06] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
16 Harriff MJ, Purdy GE, Lewinsohn DM. Escape from the Phagosome: The Explanation for MHC-I Processing of Mycobacterial Antigens? Front Immunol 2012;3:40. [PMID: 22566923 DOI: 10.3389/fimmu.2012.00040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
17 Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 2004;15:751-60. [PMID: 14617817 DOI: 10.1091/mbc.e03-05-0307] [Cited by in Crossref: 176] [Cited by in F6Publishing: 114] [Article Influence: 9.3] [Reference Citation Analysis]
18 Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Müller R. Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol 2006;185:28-38. [PMID: 16395556 DOI: 10.1007/s00203-005-0059-3] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 5.1] [Reference Citation Analysis]
19 Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet 2014;15:307-20. [DOI: 10.1038/nrg3664] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Fang F, Ge Q, Li R, Lv J, Zhang Y, Feng A, Kelly GT, Wang H, Wang X, Song C, Wang T, Qian Z. LPS restores protective immunity in macrophages against Mycobacterium tuberculosis via autophagy. Molecular Immunology 2020;124:18-24. [DOI: 10.1016/j.molimm.2020.05.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 D’avila H, Melo RCN, Parreira GG, Werneck-barroso E, Castro-faria-neto HC, Bozza PT. Mycobacterium bovis Bacillus Calmette-Guérin Induces TLR2-Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis In Vivo. J Immunol 2006;176:3087-97. [DOI: 10.4049/jimmunol.176.5.3087] [Cited by in Crossref: 193] [Cited by in F6Publishing: 189] [Article Influence: 12.1] [Reference Citation Analysis]
22 Koo MS, Subbian S, Kaplan G. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Commun Signal 2012;10:2. [PMID: 22280836 DOI: 10.1186/1478-811X-10-2] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
23 Fratti RA, Chua J, Deretic V. Induction of p38 mitogen-activated protein kinase reduces early endosome autoantigen 1 (EEA1) recruitment to phagosomal membranes. J Biol Chem 2003;278:46961-7. [PMID: 12963735 DOI: 10.1074/jbc.M305225200] [Cited by in Crossref: 84] [Cited by in F6Publishing: 47] [Article Influence: 4.4] [Reference Citation Analysis]
24 Saitoh T, Yano I, Kumazawa Y, Takimoto H. Pulmonary TCR γδ T cells induce the early inflammation of granuloma formation by a glycolipid trehalose 6,6'-dimycolate (TDM) isolated from Mycobacterium tuberculosis. Immunopharmacol Immunotoxicol 2012;34:815-23. [PMID: 22963130 DOI: 10.3109/08923973.2012.658922] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
25 Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, Verdoes M, Wilkinson RJ, Young DB, Gutierrez MG. A Rab20-Dependent Membrane Trafficking Pathway Controls M. tuberculosis Replication by Regulating Phagosome Spaciousness and Integrity. Cell Host Microbe 2017;21:619-628.e5. [PMID: 28494243 DOI: 10.1016/j.chom.2017.04.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 7.8] [Reference Citation Analysis]
26 Napier RJ, Rafi W, Cheruvu M, Powell KR, Zaunbrecher MA, Bornmann W, Salgame P, Shinnick TM, Kalman D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 2011;10:475-85. [PMID: 22100163 DOI: 10.1016/j.chom.2011.09.010] [Cited by in Crossref: 124] [Cited by in F6Publishing: 112] [Article Influence: 12.4] [Reference Citation Analysis]
27 Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A, Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013;499:178-83. [PMID: 23823726 DOI: 10.1038/nature12337] [Cited by in Crossref: 306] [Cited by in F6Publishing: 272] [Article Influence: 34.0] [Reference Citation Analysis]
28 Steinberg BE, Grinstein S. Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J Clin Invest 2008;118:2002-11. [PMID: 18523652 DOI: 10.1172/JCI35433] [Cited by in Crossref: 66] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
29 Lang ML, Glatman-Freedman A. Do CD1-restricted T cells contribute to antibody-mediated immunity against Mycobacterium tuberculosis? Infect Immun 2006;74:803-9. [PMID: 16428722 DOI: 10.1128/IAI.74.2.803-809.2006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
30 Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 2007;65:684-99. [PMID: 17635188 DOI: 10.1111/j.1365-2958.2007.05827.x] [Cited by in Crossref: 155] [Cited by in F6Publishing: 149] [Article Influence: 10.3] [Reference Citation Analysis]
31 Patterson JH, Waller RF, Jeevarajah D, Billman-Jacobe H, McConville MJ. Mannose metabolism is required for mycobacterial growth. Biochem J 2003;372:77-86. [PMID: 12593673 DOI: 10.1042/BJ20021700] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 2.5] [Reference Citation Analysis]
32 Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV. The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog 2009;5:e1000534. [PMID: 19649276 DOI: 10.1371/journal.ppat.1000534] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 5.8] [Reference Citation Analysis]
33 Jiang F, Gao Y, Dong C, Xiong S. ODC1 inhibits the inflammatory response and ROS-induced apoptosis in macrophages. Biochemical and Biophysical Research Communications 2018;504:734-41. [DOI: 10.1016/j.bbrc.2018.09.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
34 Galán JE. The cell biology of microbial infections: coming of age. J Cell Biol 2002;158:387-8. [PMID: 12163462 DOI: 10.1083/jcb.200206053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
35 Pelletreau KN, Worful JM, Sarver KE, Rumpho ME. Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty. Symbiosis 2012;58:221-32. [DOI: 10.1007/s13199-012-0192-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
36 Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019;2:349. [PMID: 31552302 DOI: 10.1038/s42003-019-0594-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
37 Rao V, Fujiwara N, Porcelli SA, Glickman MS. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 2005;201:535-43. [PMID: 15710652 DOI: 10.1084/jem.20041668] [Cited by in Crossref: 180] [Cited by in F6Publishing: 165] [Article Influence: 10.6] [Reference Citation Analysis]
38 Li Q, Karim AF, Ding X, Das B, Dobrowolski C, Gibson RM, Quiñones-Mateu ME, Karn J, Rojas RE. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Sci Rep 2016;6:27566. [PMID: 27297123 DOI: 10.1038/srep27566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
39 Wasilko DJ, Mao Y. Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Curr Genet 2016;62:105-8. [PMID: 26433729 DOI: 10.1007/s00294-015-0521-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
40 Connolly SF, Kusner DJ. The regulation of dendritic cell function by calcium-signaling and its inhibition by microbial pathogens. Immunol Res 2007;39:115-27. [PMID: 17917060 DOI: 10.1007/s12026-007-0076-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.5] [Reference Citation Analysis]
41 Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2005;102:4033-8. [PMID: 15753315 DOI: 10.1073/pnas.0409716102] [Cited by in Crossref: 349] [Cited by in F6Publishing: 327] [Article Influence: 20.5] [Reference Citation Analysis]
42 Yang H, Liu H, Chen H, Mo H, Chen J, Huang X, Zheng R, Liu Z, Feng Y, Liu F, Ge B. G protein-coupled receptor160 regulates mycobacteria entry into macrophages by activating ERK. Cell Signal 2016;28:1145-51. [PMID: 27259691 DOI: 10.1016/j.cellsig.2016.05.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
43 Gupta A, Das PN, Bouzeyen R, Karmakar SP, Singh R, Bairagi N, Chatterjee S. Restoration of cytosolic calcium inhibits Mycobacterium tuberculosis intracellular growth: Theoretical evidence and experimental observation. Journal of Theoretical Biology 2019;472:110-23. [DOI: 10.1016/j.jtbi.2019.04.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother 2017;95:1520-34. [PMID: 28946393 DOI: 10.1016/j.biopha.2017.09.036] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
45 Hilbi H. Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell Microbiol 2006;8:1697-706. [PMID: 16939534 DOI: 10.1111/j.1462-5822.2006.00793.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 3.8] [Reference Citation Analysis]
46 Kapoor E, Tripathi V, Kumar V, Juyal V, Bhagat S, Ram V. Cyto-genotoxicity Assessment of Potential Anti-tubercular Drug Candidate Molecule-trans-cyclohexane-1, 4-diamine Derivative-9u in Human Lung Epithelial Cells A549. Toxicol Int 2014;21:69-77. [PMID: 24748738 DOI: 10.4103/0971-6580.128800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas Ø. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography. PLoS One 2015;10:e0134644. [PMID: 26406896 DOI: 10.1371/journal.pone.0134644] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
48 Podinovskaia M, Lee W, Caldwell S, Russell DG. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 2013;15:843-59. [PMID: 23253353 DOI: 10.1111/cmi.12092] [Cited by in Crossref: 112] [Cited by in F6Publishing: 100] [Article Influence: 12.4] [Reference Citation Analysis]
49 O'sullivan DM, Mchugh TD, Gillespie SH. The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. Journal of Antimicrobial Chemotherapy 2008;62:709-12. [DOI: 10.1093/jac/dkn259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
50 Deretic V, Vergne I, Chua J, Master S, Singh SB, Fazio JA, Kyei G. Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV. Cell Microbiol 2004;6:999-1009. [PMID: 15469429 DOI: 10.1111/j.1462-5822.2004.00449.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 1.9] [Reference Citation Analysis]
51 [DOI: 10.1101/2020.09.27.315739] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Berrington WR, Macdonald M, Khadge S, Sapkota BR, Janer M, Hagge DA, Kaplan G, Hawn TR. Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis 2010;201:1422-35. [PMID: 20350193 DOI: 10.1086/651559] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 5.8] [Reference Citation Analysis]
53 Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 2008;10:1027-39. [PMID: 18298637 DOI: 10.1111/j.1462-5822.2008.01133.x] [Cited by in Crossref: 188] [Cited by in F6Publishing: 174] [Article Influence: 13.4] [Reference Citation Analysis]
54 Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 2003;100:5437-42. [PMID: 12702770 DOI: 10.1073/pnas.0737613100] [Cited by in Crossref: 338] [Cited by in F6Publishing: 322] [Article Influence: 17.8] [Reference Citation Analysis]
55 Van Rhijn I, Moody DB. CD1 and mycobacterial lipids activate human T cells. Immunol Rev 2015;264:138-53. [PMID: 25703557 DOI: 10.1111/imr.12253] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 8.6] [Reference Citation Analysis]
56 Vergne I, Chua J, Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 2003;198:653-9. [PMID: 12925680 DOI: 10.1084/jem.20030527] [Cited by in Crossref: 225] [Cited by in F6Publishing: 223] [Article Influence: 11.8] [Reference Citation Analysis]
57 Sousa S, Borges V, Joao I, Gomes JP, Jordao L. Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019;7:E113. [PMID: 31035520 DOI: 10.3390/microorganisms7050113] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
58 Singh A, Gupta R, Vishwakarma RA, Narayanan PR, Paramasivan CN, Ramanathan VD, Tyagi AK. Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 2005;187:4173-86. [PMID: 15937179 DOI: 10.1128/JB.187.12.4173-4186.2005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
59 Sachdeva K, Goel M, Sudhakar M, Mehta M, Raju R, Raman K, Singh A, Sundaramurthy V. Mycobacterium tuberculosis (Mtb) lipid mediated lysosomal rewiring in infected macrophages modulates intracellular Mtb trafficking and survival. J Biol Chem 2020;295:9192-210. [PMID: 32424041 DOI: 10.1074/jbc.RA120.012809] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
60 Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response: The mycobacterial lipoarabinomannan and related molecules. Molecular Microbiology 2004;53:391-403. [DOI: 10.1111/j.1365-2958.2004.04183.x] [Cited by in Crossref: 314] [Cited by in F6Publishing: 297] [Article Influence: 17.4] [Reference Citation Analysis]
61 Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013;3:24. [PMID: 23847769 DOI: 10.3389/fcimb.2013.00024] [Cited by in Crossref: 116] [Cited by in F6Publishing: 114] [Article Influence: 12.9] [Reference Citation Analysis]
62 Gautam US, Mehra S, Kaushal D. In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 2015;10:e0135208. [PMID: 26270051 DOI: 10.1371/journal.pone.0135208] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
63 Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 2010;11:751-8. [PMID: 20622882 DOI: 10.1038/ni.1904] [Cited by in Crossref: 169] [Cited by in F6Publishing: 163] [Article Influence: 14.1] [Reference Citation Analysis]
64 Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst Biol 2015;9:57. [PMID: 26377923 DOI: 10.1186/s12918-015-0206-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
65 Rojas RE, Thomas JJ, Gehring AJ, Hill PJ, Belisle JT, Harding CV, Boom WH. Phosphatidylinositol mannoside from Mycobacterium tuberculosis binds alpha5beta1 integrin (VLA-5) on CD4+ T cells and induces adhesion to fibronectin. J Immunol. 2006;177:2959-2968. [PMID: 16920931 DOI: 10.4049/jimmunol.177.5.2959] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 1.8] [Reference Citation Analysis]
66 Jayaprakash K, Lu J, Fraser-reid B. Synthesis of a key Mycobacterium tuberculosis biosynthetic phosphoinositide intermediate. Bioorganic & Medicinal Chemistry Letters 2004;14:3815-9. [DOI: 10.1016/j.bmcl.2004.04.103] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 1.9] [Reference Citation Analysis]
67 Hilbi H, Weber S, Finsel I. Anchors for effectors: subversion of phosphoinositide lipids by legionella. Front Microbiol 2011;2:91. [PMID: 21833330 DOI: 10.3389/fmicb.2011.00091] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 6.2] [Reference Citation Analysis]
68 Kapoor E, Tripathi V, Kumar V, Juyal V, Bhagat S, Ram V. Expression Profile of Markers of Apoptosis, Injury and Oxidative Stress in Human Lung Epithelium Cells-A5449 Receiving Chronic Exposure of Potential Anti-Tubercular Drug-trans-Cyclohexane-1, 4-Diamine Derivative-"9u". Toxicol Int 2014;21:172-8. [PMID: 25253927 DOI: 10.4103/0971-6580.139803] [Reference Citation Analysis]
69 Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol 2004;110:2-12. [PMID: 14986673 DOI: 10.1016/s1521-6616(03)00210-9] [Cited by in Crossref: 117] [Cited by in F6Publishing: 61] [Article Influence: 6.5] [Reference Citation Analysis]
70 Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020;17:901-13. [PMID: 32728204 DOI: 10.1038/s41423-020-0502-z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
71 Chua J, Deretic V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J Biol Chem 2004;279:36982-92. [PMID: 15210698 DOI: 10.1074/jbc.M405082200] [Cited by in Crossref: 67] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
72 Griffiths G. On phagosome individuality and membrane signalling networks. Trends in Cell Biology 2004;14:343-51. [DOI: 10.1016/j.tcb.2004.05.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
73 Songane M, Kleinnijenhuis J, Netea MG, van Crevel R. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2012;92:388-96. [PMID: 22683183 DOI: 10.1016/j.tube.2012.05.004] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 6.5] [Reference Citation Analysis]
74 Chen M, Divangahi M, Gan H, Shin DS, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 2008;205:2791-801. [PMID: 18955568 DOI: 10.1084/jem.20080767] [Cited by in Crossref: 232] [Cited by in F6Publishing: 223] [Article Influence: 16.6] [Reference Citation Analysis]
75 Jackson M. The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 2014;4:a021105. [PMID: 25104772 DOI: 10.1101/cshperspect.a021105] [Cited by in Crossref: 108] [Cited by in F6Publishing: 83] [Article Influence: 13.5] [Reference Citation Analysis]
76 Weber SS, Ragaz C, Hilbi H. Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 2009;71:1341-52. [PMID: 19208094 DOI: 10.1111/j.1365-2958.2009.06608.x] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 7.9] [Reference Citation Analysis]
77 Warner DF, Mizrahi V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 2006;19:558-70. [PMID: 16847086 DOI: 10.1128/CMR.00060-05] [Cited by in Crossref: 103] [Cited by in F6Publishing: 56] [Article Influence: 6.4] [Reference Citation Analysis]
78 Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 2019;43:341-61. [PMID: 30916769 DOI: 10.1093/femsre/fuz006] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 21.7] [Reference Citation Analysis]
79 Lv J, He X, Wang H, Wang Z, Kelly GT, Wang X, Chen Y, Wang T, Qian Z. TLR4-NOX2 axis regulates the phagocytosis and killing of Mycobacterium tuberculosis by macrophages. BMC Pulm Med 2017;17:194. [PMID: 29233104 DOI: 10.1186/s12890-017-0517-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
80 Strong EJ, Lee S. Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Front Microbiol 2020;11:614313. [PMID: 33519771 DOI: 10.3389/fmicb.2020.614313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Ehlers S. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol 2010;89:95-101. [PMID: 19892432 DOI: 10.1016/j.ejcb.2009.10.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
82 Dagur PK, Sharma B, Upadhyay R, Dua B, Rizvi A, Khan NA, Katoch VM, Sengupta U, Joshi B. Phenolic-glycolipid-1 and lipoarabinomannan preferentially modulate TCR- and CD28-triggered proximal biochemical events, leading to T-cell unresponsiveness in mycobacterial diseases. Lipids Health Dis 2012;11:119. [PMID: 22985026 DOI: 10.1186/1476-511X-11-119] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
83 Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis. J Med Chem 2016;59:6027-44. [PMID: 27144688 DOI: 10.1021/acs.jmedchem.5b01833] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
84 Jordao L, Vieira OV. Tuberculosis: new aspects of an old disease. Int J Cell Biol 2011;2011:403623. [PMID: 21760796 DOI: 10.1155/2011/403623] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
85 Bhat ZS, Rather MA, Syed KY, Ahmad Z. α-pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis. Future Medicinal Chemistry 2017;9:2053-67. [DOI: 10.4155/fmc-2017-0116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
86 Deretic V. Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it. Future Microbiol 2008;3:517-24. [PMID: 18811236 DOI: 10.2217/17460913.3.5.517] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
87 Lou J, Wang Y, Zheng X, Qiu W. TRIM22 regulates macrophage autophagy and enhances Mycobacterium tuberculosis clearance by targeting the nuclear factor-multiplicity κB/beclin 1 pathway. J Cell Biochem 2018;119:8971-80. [PMID: 30011088 DOI: 10.1002/jcb.27153] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
88 Almeida PE, Roque NR, Magalhães KG, Mattos KA, Teixeira L, Maya-Monteiro C, Almeida CJ, Castro-Faria-Neto HC, Ryffel B, Quesniaux VF, Bozza PT. Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochim Biophys Acta 2014;1841:97-107. [PMID: 24120921 DOI: 10.1016/j.bbalip.2013.10.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
89 Pitcher MJ, Bowness R, Dobson S, Eftimie R, Gillespie SH. Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle. J Theor Biol 2020;506:110381. [PMID: 32771534 DOI: 10.1016/j.jtbi.2020.110381] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE, Gallo R, Appelberg R, Griffiths G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol 2011;13:1601-17. [PMID: 21790937 DOI: 10.1111/j.1462-5822.2011.01644.x] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 9.0] [Reference Citation Analysis]
91 Goletti D, Petruccioli E, Romagnoli A, Piacentini M, Fimia GM. Autophagy in Mycobacterium tuberculosis infection: a passepartout to flush the intruder out? Cytokine Growth Factor Rev 2013;24:335-43. [PMID: 23395260 DOI: 10.1016/j.cytogfr.2013.01.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
92 Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 2003;15:450-5. [PMID: 12900278 DOI: 10.1016/s0952-7915(03)00075-x] [Cited by in Crossref: 176] [Cited by in F6Publishing: 85] [Article Influence: 9.8] [Reference Citation Analysis]
93 Pareja ME, Colombo MI. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front Cell Infect Microbiol 2013;3:54. [PMID: 24137567 DOI: 10.3389/fcimb.2013.00054] [Cited by in Crossref: 25] [Cited by in F6Publishing: 40] [Article Influence: 2.8] [Reference Citation Analysis]
94 Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages. Cell 2004;119:753-66. [DOI: 10.1016/j.cell.2004.11.038] [Cited by in Crossref: 1519] [Cited by in F6Publishing: 1454] [Article Influence: 84.4] [Reference Citation Analysis]
95 Morita YS, Velasquez R, Taig E, Waller RF, Patterson JH, Tull D, Williams SJ, Billman-Jacobe H, McConville MJ. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 2005;280:21645-52. [PMID: 15805104 DOI: 10.1074/jbc.M414181200] [Cited by in Crossref: 62] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
96 Roberts EA, Deretic V. The Mycobacterium tuberculosis phagosome. Methods Mol Biol 2008;445:439-49. [PMID: 18425467 DOI: 10.1007/978-1-59745-157-4_28] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
97 Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med. 2010;2:258-274. [PMID: 20597103 DOI: 10.1002/emmm.201000079] [Cited by in Crossref: 276] [Cited by in F6Publishing: 267] [Article Influence: 23.0] [Reference Citation Analysis]
98 Ponpuak M, Delgado MA, Elmaoued RA, Deretic V. Monitoring autophagy during Mycobacterium tuberculosis infection. Methods Enzymol 2009;452:345-61. [PMID: 19200892 DOI: 10.1016/S0076-6879(08)03621-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
99 Shui W, Gilmore SA, Sheu L, Liu J, Keasling JD, Bertozzi CR. Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids. J Proteome Res 2009;8:282-9. [PMID: 19053526 DOI: 10.1021/pr800422e] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
100 Miller BH, Fratti RA, Poschet JF, Timmins GS, Master SS, Burgos M, Marletta MA, Deretic V. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 2004;72:2872-8. [PMID: 15102799 DOI: 10.1128/IAI.72.5.2872-2878.2004] [Cited by in Crossref: 99] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
101 van der Niet S, van Zon M, de Punder K, Grootemaat A, Rutten S, Moorlag SJCFM, Houben D, van der Sar AM, Bitter W, Brosch R, Hernandez Pando R, Pena MT, Peters PJ, Reits EA, Mayer-Barber KD, van der Wel NN. IL-1R1-Dependent Signals Improve Control of Cytosolic Virulent Mycobacteria In Vivo. mSphere 2021;6:e00153-21. [PMID: 33952660 DOI: 10.1128/mSphere.00153-21] [Reference Citation Analysis]
102 Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis.Cell Microbiol. 2015;17:1277-1285. [PMID: 26135005 DOI: 10.1111/cmi.12480] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 9.6] [Reference Citation Analysis]
103 Saini A, Mahajan S, Ahuja N, Bhagyaraj E, Kalra R, Janmeja AK, Gupta P. An Accord of Nuclear Receptor Expression in M. tuberculosis Infected Macrophages and Dendritic Cells. Sci Rep 2018;8:2296. [PMID: 29396519 DOI: 10.1038/s41598-018-20769-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
104 Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 2003;198:693-704. [PMID: 12953091 DOI: 10.1084/jem.20030846] [Cited by in Crossref: 1036] [Cited by in F6Publishing: 979] [Article Influence: 54.5] [Reference Citation Analysis]
105 Bhaskar A, Chawla M, Mehta M, Parikh P, Chandra P, Bhave D, Kumar D, Carroll KS, Singh A. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection. PLoS Pathog 2014;10:e1003902. [PMID: 24497832 DOI: 10.1371/journal.ppat.1003902] [Cited by in Crossref: 113] [Cited by in F6Publishing: 106] [Article Influence: 14.1] [Reference Citation Analysis]
106 Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, Majlessi L. Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 2015;11:e1004650. [PMID: 25658322 DOI: 10.1371/journal.ppat.1004650] [Cited by in Crossref: 139] [Cited by in F6Publishing: 124] [Article Influence: 19.9] [Reference Citation Analysis]
107 Rhoades E, Hsu F, Torrelles JB, Turk J, Chatterjee D, Russell DG. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol 2003;48:875-88. [PMID: 12753183 DOI: 10.1046/j.1365-2958.2003.03473.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 4.0] [Reference Citation Analysis]
108 Williamson KE, Kan J, Polson SW, Williamson SJ. Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biology and Biochemistry 2011;43:736-48. [DOI: 10.1016/j.soilbio.2010.04.017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
109 Payrastre B, Gaits-iacovoni F, Sansonetti P, Tronchère H. Phosphoinositides and Cellular Pathogens. In: Balla T, Wymann M, York JD, editors. Phosphoinositides II: The Diverse Biological Functions. Dordrecht: Springer Netherlands; 2012. pp. 363-88. [DOI: 10.1007/978-94-007-3015-1_12] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
110 Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature 2003;422:775-81. [DOI: 10.1038/nature01603] [Cited by in Crossref: 230] [Cited by in F6Publishing: 210] [Article Influence: 12.1] [Reference Citation Analysis]
111 Patil V, Jain V. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State. J Bacteriol 2019;201:e00210-19. [PMID: 31285242 DOI: 10.1128/JB.00210-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
112 Ben Cheikh Y, Travers M, Le Foll F. Infection dynamics of a V. splendidus strain pathogenic to Mytilus edulis: In vivo and in vitro interactions with hemocytes. Fish & Shellfish Immunology 2017;70:515-23. [DOI: 10.1016/j.fsi.2017.09.047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
113 Parker HL, Tomás RMF, Furze CM, Guy CS, Fullam E. Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria. Org Biomol Chem 2020;18:3607-12. [PMID: 32350493 DOI: 10.1039/d0ob00253d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
114 López de Armentia MM, Amaya C, Colombo MI. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles. Cells 2016;5:E11. [PMID: 27005665 DOI: 10.3390/cells5010011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
115 Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet 2014;15:307-20. [DOI: 10.1038/nrg3664] [Cited by in Crossref: 133] [Cited by in F6Publishing: 112] [Article Influence: 16.6] [Reference Citation Analysis]
116 Chandra V, Bhagyaraj E, Nanduri R, Ahuja N, Gupta P. NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy. Autophagy 2015;11:1987-97. [PMID: 26390081 DOI: 10.1080/15548627.2015.1091140] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
117 van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ. M. tuberculosis and M. leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells. Cell 2007;129:1287-98. [DOI: 10.1016/j.cell.2007.05.059] [Cited by in Crossref: 658] [Cited by in F6Publishing: 601] [Article Influence: 43.9] [Reference Citation Analysis]