BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018;7:e1503032. [PMID: 30524901 DOI: 10.1080/2162402X.2018.1503032] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022;12:940019. [DOI: 10.3389/fonc.2022.940019] [Reference Citation Analysis]
2 Liu T, Zhao N, Shi M, Shen Y, Mao C, Zhou X. Phage‐Derived Oncolytic Viruses with 3C from Seneca Valley Virus for Targeted Therapy of Cervical Cancer. Advanced Therapeutics. [DOI: 10.1002/adtp.202200059] [Reference Citation Analysis]
3 Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
4 Quinn CH, Beierle AM, Hutchins SC, Marayati R, Bownes LV, Stewart JE, Markert HR, Erwin MH, Aye JM, Yoon KJ, Friedman GK, Willey CD, Markert JM, Beierle EA. Targeting High-Risk Neuroblastoma Patient-Derived Xenografts with Oncolytic Virotherapy. Cancers (Basel) 2022;14:762. [PMID: 35159029 DOI: 10.3390/cancers14030762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. Micromachines 2022;13:152. [DOI: 10.3390/mi13020152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Suryawanshi YR, Nace RA, Russell SJ, Schulze AJ. MicroRNA-detargeting proves more effective than leader gene deletion for improving safety of oncolytic Mengovirus in a nude mouse model. Mol Ther Oncolytics 2021;23:1-13. [PMID: 34589580 DOI: 10.1016/j.omto.2021.08.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021;13:1982447. [PMID: 34747345 DOI: 10.1080/19420862.2021.1982447] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021;10:1984677. [PMID: 34676147 DOI: 10.1080/2162402X.2021.1984677] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
9 Nettelbeck DM, Leber MF, Altomonte J, Angelova A, Beil J, Berchtold S, Delic M, Eberle J, Ehrhardt A, Engeland CE, Fechner H, Geletneky K, Goepfert K, Holm PS, Kochanek S, Kreppel F, Krutzke L, Kühnel F, Lang KS, Marchini A, Moehler M, Mühlebach MD, Naumann U, Nawroth R, Nüesch J, Rommelaere J, Lauer UM, Ungerechts G. Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021;13:1420. [PMID: 34452286 DOI: 10.3390/v13081420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Suryawanshi YR, Schulze AJ. Oncolytic Viruses for Malignant Glioma: On the Verge of Success? Viruses 2021;13:1294. [PMID: 34372501 DOI: 10.3390/v13071294] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Singh HM, Leber MF, Bossow S, Engeland CE, Dessila J, Grossardt C, Zaoui K, Bell JC, Jäger D, von Kalle C, Ungerechts G. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Mol Ther Oncolytics 2021;21:340-55. [PMID: 34141871 DOI: 10.1016/j.omto.2021.04.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kumar V, Giacomantonio MA, Gujar S. Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses 2021;13:654. [PMID: 33920168 DOI: 10.3390/v13040654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Perez C, Rico J, Guerrero C, Acosta O. Role of heat-shock proteins in infection of human adenocarcinoma cell line MCF-7 by tumor-adapted rotavirus isolates. Colomb Med (Cali) 2021;52:e2024196. [PMID: 33911319 DOI: 10.25100/cm.v51i4.4196] [Reference Citation Analysis]
14 Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020;21:E8627. [PMID: 33207653 DOI: 10.3390/ijms21228627] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
15 Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy.Int J Mol Sci. 2020;21. [PMID: 33167582 DOI: 10.3390/ijms21218310] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
16 Hamada M, Yura Y. Efficient Delivery and Replication of Oncolytic Virus for Successful Treatment of Head and Neck Cancer.Int J Mol Sci. 2020;21. [PMID: 32992948 DOI: 10.3390/ijms21197073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
17 Krutzke L, Allmendinger E, Hirt K, Kochanek S. Chorioallantoic Membrane Tumor Model for Evaluating Oncolytic Viruses. Hum Gene Ther 2020;31:1100-13. [PMID: 32552215 DOI: 10.1089/hum.2020.045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res 2021;31:5-16. [PMID: 32733014 DOI: 10.1038/s41422-020-0383-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 39] [Article Influence: 6.5] [Reference Citation Analysis]
19 Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020;9:1796002. [PMID: 32934889 DOI: 10.1080/2162402X.2020.1796002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
20 Gujar S, Pol JG, Kim Y, Kroemer G. Repurposing CD8+ T cell immunity against SARS-CoV-2 for cancer immunotherapy: a positive aspect of the COVID-19 pandemic? Oncoimmunology 2020;9:1794424. [PMID: 32923158 DOI: 10.1080/2162402X.2020.1794424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020;56:39-48. [PMID: 32718830 DOI: 10.1016/j.cytogfr.2020.07.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
22 Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020;8:524. [PMID: 32671070 DOI: 10.3389/fcell.2020.00524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
23 Robles-Planells C, Barrera-Avalos C, Rojo LE, Spencer E, Cortez-San Martin M, Matiacevich S, Pavez J, Milla LA, Navarro FD, Martínez BA, Bravo FJ, Mella A, Huidobro-Toro JP, Fernandez R, Escobar A, Castillo CA. Chitosan-Based Delivery of Avian Reovirus Fusogenic Protein p10 Gene: In Vitro and In Vivo Studies towards a New Vaccine against Melanoma. Biomed Res Int 2020;2020:4045760. [PMID: 32626742 DOI: 10.1155/2020/4045760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Mach N, Gao J, Schaffarczyk L, Janz S, Ehrke-Schulz E, Dittmar T, Ehrhardt A, Zhang W. Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy. Cancers (Basel) 2020;12:E1403. [PMID: 32486014 DOI: 10.3390/cancers12061403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Zafar S, Hemminki O, Heiniö C, Munaro E, Siurala M, Sorsa S, Mirtti T, Järvinen P, Mildh M, Nisen H, Rannikko A, Anttila M, Kanerva A, Hemminki A. Tumor microenvironment remodeling by an engineered oncolytic adenovirus results in improved outcome from PD-L1 inhibition. Oncoimmunology 2020;9:1761229. [PMID: 32923123 DOI: 10.1080/2162402X.2020.1761229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
26 Robles-Planells C, Sánchez-Guerrero G, Barrera-Avalos C, Matiacevich S, Rojo LE, Pavez J, Salas-Huenuleo E, Kogan MJ, Escobar A, Milla LA, Fernandez R, Imarai M, Spencer E, Huidobro-Toro JP, Acuña-Castillo C. Chitosan-Based Nanoparticles for Intracellular Delivery of ISAV Fusion Protein cDNA into Melanoma Cells: A Path to Develop Oncolytic Anticancer Therapies. Mediators Inflamm 2020;2020:8680692. [PMID: 32410869 DOI: 10.1155/2020/8680692] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zhang W, Hu X, Liang J, Zhu Y, Zeng B, Feng L, Zhao C, Liu S, Liu B, Zhang K. oHSV2 Can Target Murine Colon Carcinoma by Altering the Immune Status of the Tumor Microenvironment and Inducing Antitumor Immunity. Mol Ther Oncolytics 2020;16:158-71. [PMID: 32055679 DOI: 10.1016/j.omto.2019.12.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
28 Busch E, Kubon KD, Mayer JKM, Pidelaserra-Martí G, Albert J, Hoyler B, Heidbuechel JPW, Stephenson KB, Lichty BD, Osen W, Eichmüller SB, Jäger D, Ungerechts G, Engeland CE. Measles Vaccines Designed for Enhanced CD8+ T Cell Activation. Viruses 2020;12:E242. [PMID: 32098134 DOI: 10.3390/v12020242] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
29 Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020;9:E171. [PMID: 31936317 DOI: 10.3390/jcm9010171] [Cited by in Crossref: 22] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
30 Fusciello M, Fontana F, Tähtinen S, Capasso C, Feola S, Martins B, Chiaro J, Peltonen K, Ylösmäki L, Ylösmäki E, Hamdan F, Kari OK, Ndika J, Alenius H, Urtti A, Hirvonen JT, Santos HA, Cerullo V. Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat Commun 2019;10:5747. [PMID: 31848338 DOI: 10.1038/s41467-019-13744-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 43] [Article Influence: 9.7] [Reference Citation Analysis]
31 Marayati R, Quinn CH, Beierle EA. Immunotherapy in Pediatric Solid Tumors-A Systematic Review. Cancers (Basel) 2019;11:E2022. [PMID: 31847387 DOI: 10.3390/cancers11122022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
32 Yamada Y, Liao GR, Tseng CY, Tseng YY, Hsu WL. Establishment and characterization of transformed goat primary cells by expression of simian virus 40 large T antigen for orf virus propagations. PLoS One 2019;14:e0226105. [PMID: 31805146 DOI: 10.1371/journal.pone.0226105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
33 Aznar MA, Molina C, Teijeira A, Rodriguez I, Azpilikueta A, Garasa S, Sanchez-Paulete AR, Cordeiro L, Etxeberria I, Alvarez M, Rius-Rocabert S, Nistal-Villan E, Berraondo P, Melero I. Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Mol Med 2020;12:e10375. [PMID: 31746149 DOI: 10.15252/emmm.201910375] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
34 Zheng M, Huang J, Tong A, Yang H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances.Mol Ther Oncolytics. 2019;15:234-247. [PMID: 31872046 DOI: 10.1016/j.omto.2019.10.007] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 30.7] [Reference Citation Analysis]
35 Zhang L, Suksanpaisan L, Jiang H, DeGrado TR, Russell SJ, Zhao M, Peng KW. Dual-Isotope SPECT Imaging with NIS Reporter Gene and Duramycin to Visualize Tumor Susceptibility to Oncolytic Virus Infection. Mol Ther Oncolytics 2019;15:178-85. [PMID: 31890867 DOI: 10.1016/j.omto.2019.10.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
36 Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G, Jolly A, De La Grange P, Zitvogel L, Kroemer G, Pol JG. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 2019;8:e1657375. [PMID: 31646107 DOI: 10.1080/2162402X.2019.1657375] [Cited by in Crossref: 29] [Cited by in F6Publishing: 38] [Article Influence: 9.7] [Reference Citation Analysis]
37 Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019;7:E66. [PMID: 31480379 DOI: 10.3390/biomedicines7030066] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
38 Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019;10:1415. [PMID: 31316503 DOI: 10.3389/fimmu.2019.01415] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
39 Schuster P, Lindner G, Thomann S, Haferkamp S, Schmidt B. Prospect of Plasmacytoid Dendritic Cells in Enhancing Anti-Tumor Immunity of Oncolytic Herpes Viruses. Cancers (Basel) 2019;11:E651. [PMID: 31083559 DOI: 10.3390/cancers11050651] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
40 Davola ME, Mossman KL. Oncolytic viruses: how "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019;8:e1581528. [PMID: 31069150 DOI: 10.1080/2162402X.2019.1596006] [Cited by in Crossref: 44] [Cited by in F6Publishing: 50] [Article Influence: 14.7] [Reference Citation Analysis]