BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luque-Michel E, Imbuluzqueta E, Sebastián V, Blanco-Prieto MJ. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 2017;14:75-92. [PMID: 27339650 DOI: 10.1080/17425247.2016.1205585] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, Fallahi Nezhad F, Vijayakameswara Rao N, Omidifar N, Chiang W. Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals 2022;15:1137. [DOI: 10.3390/ph15091137] [Reference Citation Analysis]
2 Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022;:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Reference Citation Analysis]
3 Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. Journal of Drug Targeting. [DOI: 10.1080/1061186x.2022.2069782] [Reference Citation Analysis]
4 Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine (Lond) 2022. [PMID: 35451315 DOI: 10.2217/nnm-2021-0126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Macchi S, Jalihal A, Hooshmand N, Zubair M, Jenkins S, Alwan N, El-Sayed M, Ali N, Griffin RJ, Siraj N. Enhanced photothermal heating and combination therapy of NIR dye via conversion to self-assembled ionic nanomaterials. J Mater Chem B 2022. [PMID: 35043823 DOI: 10.1039/d1tb02280f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Chiesa E, Greco A, Riva F, Dorati R, Conti B, Modena T, Genta I. CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals 2022;15:103. [DOI: 10.3390/ph15010103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021;610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, Iqbal Z, Mahmood S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021;7:207. [PMID: 34842705 DOI: 10.3390/gels7040207] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
9 Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021;9:707319. [PMID: 34249894 DOI: 10.3389/fbioe.2021.707319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
10 Hanieh PN, Forte J, Di Meo C, Ammendolia MG, Del Favero E, Cantù L, Rinaldi F, Marianecci C, Carafa M. Hyaluronic Acid Derivative Effect on Niosomal Coating and Interaction with Cellular Mimetic Membranes. Molecules 2021;26:3434. [PMID: 34198955 DOI: 10.3390/molecules26113434] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021;26:3085. [PMID: 34064173 DOI: 10.3390/molecules26113085] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
12 Liu J, Li Z, Zhao D, Feng X, Wang C, Li D, Ding J. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Materials & Design 2021;202:109465. [DOI: 10.1016/j.matdes.2021.109465] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
13 Qin J, Zhu Y, Zheng D, Zhao Q. pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Bio-des Manuf 2021;4:612-26. [DOI: 10.1007/s42242-020-00105-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Luque-Michel E, Lemaire L, Blanco-Prieto MJ. SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res 2021;11:515-23. [PMID: 33405212 DOI: 10.1007/s13346-020-00880-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 2020;60:102070. [DOI: 10.1016/j.jddst.2020.102070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Liang Q, Xiang H, Li X, Luo C, Ma X, Zhao W, Chen J, Tian Z, Li X, Song X. Development of Rifapentine-Loaded PLGA-Based Nanoparticles: In vitro Characterisation and in vivo Study in Mice. Int J Nanomedicine 2020;15:7491-507. [PMID: 33116484 DOI: 10.2147/IJN.S257758] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Eleamen Oliveira E, Barendji M, Vauthier C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes? Pharm Res 2020;37. [DOI: 10.1007/s11095-020-02869-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Iannazzo D, Celesti C, Espro C. Recent Advances on Graphene Quantum Dots as Multifunctional Nanoplatforms for Cancer Treatment. Biotechnol J 2021;16:e1900422. [PMID: 32618417 DOI: 10.1002/biot.201900422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
19 Wan J, Li Y, Jin K, Guo J, Xu J, Wang C. Robust Strategy for Antibody-Polymer-Drug Conjugation: Significance of Conjugating Orientation and Linker Charge on Targeting Ability. ACS Appl Mater Interfaces 2020;12:23717-25. [PMID: 32368886 DOI: 10.1021/acsami.0c04471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Aparicio-blanco J, Sanz-arriazu L, Lorenzoni R, Blanco-prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. International Journal of Pharmaceutics 2020;581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Cheng X, Lv X, Xu J, Zheng Y, Wang X, Tang R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur J Pharm Sci 2020;146:105275. [PMID: 32087259 DOI: 10.1016/j.ejps.2020.105275] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
22 Talluri S, Malla RR. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers. CDM 2020;20:942-5. [DOI: 10.2174/1389200220666191016124958] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
23 Luque-Michel E, Sebastian V, Larrea A, Marquina C, Blanco-Prieto MJ. Co-encapsulation of superparamagnetic nanoparticles and doxorubicin in PLGA nanocarriers: Development, characterization and in vitro antitumor efficacy in glioma cells. Eur J Pharm Biopharm 2019;145:65-75. [PMID: 31628997 DOI: 10.1016/j.ejpb.2019.10.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
24 Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2021;69:190-9. [PMID: 31446004 DOI: 10.1016/j.semcancer.2019.08.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
25 Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, Keating KA, Mousa SA. Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Sci Rep 2019;9:9006. [PMID: 31227723 DOI: 10.1038/s41598-019-44979-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
26 Ali Y, Alqudah A, Ahmad S, Abd Hamid S, Farooq U. Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym 2019;22:91-7. [PMID: 31007637 DOI: 10.1080/15685551.2019.1591681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
27 Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019;27:502-24. [PMID: 30889991 DOI: 10.1080/1061186X.2019.1588280] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Iannazzo D, Pistone A, Celesti C, Triolo C, Patané S, Giofré SV, Romeo R, Ziccarelli I, Mancuso R, Gabriele B, Visalli G, Facciolà A, Di Pietro A. A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Dots. Nanomaterials (Basel) 2019;9:E282. [PMID: 30781623 DOI: 10.3390/nano9020282] [Cited by in Crossref: 33] [Cited by in F6Publishing: 43] [Article Influence: 11.0] [Reference Citation Analysis]
29 Yang Z, He G, Cai D, Ren Z. Photothermal Heating-Induced Localized Structural Disruption in a Poly-ε-caprolactone Nanocarrier System for Controlled Drug Delivery. ACS Appl Bio Mater 2019;2:464-9. [DOI: 10.1021/acsabm.8b00662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Chida T, Miura Y, Cabral H, Nomoto T, Kataoka K, Nishiyama N. Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release. Journal of Controlled Release 2018;292:130-40. [DOI: 10.1016/j.jconrel.2018.10.035] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
31 Wang C, Wu J, Wang Z, Yang Z, Li Z, Deng H, Li L, Peng X, Feng M. Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials 2018;183:77-92. [PMID: 30149232 DOI: 10.1016/j.biomaterials.2018.08.035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
32 Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine 2018;13:1639-56. [DOI: 10.2217/nnm-2018-0007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
33 Nam S, Lee SY, Kang WS, Cho HJ. Development of Resveratrol-Loaded Herbal Extract-Based Nanocomposites and Their Application to the Therapy of Ovarian Cancer. Nanomaterials (Basel) 2018;8:E384. [PMID: 29857475 DOI: 10.3390/nano8060384] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
34 Li Y, Bui QN, Duy LTM, Yang HY, Lee DS. One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules 2018;19:2062-70. [PMID: 29625005 DOI: 10.1021/acs.biomac.8b00195] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
35 Chen M, Zhang X, Lu L, Zhang F, Duan X, Zheng C, Chen Y, Shen J. Monitoring of macrophage recruitment enhanced by Toll-like receptor 4 activation with MR imaging in nerve injury: MRI of Enhanced Macrophage Recruitment in Nerve Injury. Muscle Nerve 2018;58:123-32. [DOI: 10.1002/mus.26097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Chen X, Wang H, Wang H, Fu Y, Liu J, Liu R. The Radiosensitizing Effect of Nanodiamonds (NDs) on HeLa Cells Under X-Ray Irradiation. Phys Status Solidi A 2018;215:1700715. [DOI: 10.1002/pssa.201700715] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Shi X, He D, Tang G, Tang Q, Xiong R, Ouyang H, Yu C. Fabrication and characterization of a folic acid-bound 5-fluorouracil loaded quantum dot system for hepatocellular carcinoma targeted therapy. RSC Adv 2018;8:19868-78. [DOI: 10.1039/c8ra01025k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
38 Abd-el-aziz AS, Agatemor C. Emerging Opportunities in the Biomedical Applications of Dendrimers. J Inorg Organomet Polym 2018;28:369-82. [DOI: 10.1007/s10904-017-0768-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
39 Mendes AN, Filgueiras LA, Siqueira MRP, Barbosa GM, Holandino C, de Lima Moreira D, Pinto JC, Nele M. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. Int J Nanomedicine 2017;12:8363-73. [PMID: 29200848 DOI: 10.2147/IJN.S134756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Scomparin A, Florindo HF, Tiram G, Ferguson EL, Satchi-Fainaro R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv Drug Deliv Rev 2017;118:52-64. [PMID: 28916497 DOI: 10.1016/j.addr.2017.09.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
41 Neumann IA, Flores-sahagun THS, Ribeiro AM. Biodegradable poly (l-lactic acid) (PLLA) and PLLA-3-arm blend membranes: The use of PLLA-3-arm as a plasticizer. Polymer Testing 2017;60:84-93. [DOI: 10.1016/j.polymertesting.2017.03.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
42 Ganesh AN, Logie J, McLaughlin CK, Barthel BL, Koch TH, Shoichet BK, Shoichet MS. Leveraging Colloidal Aggregation for Drug-Rich Nanoparticle Formulations. Mol Pharm 2017;14:1852-60. [PMID: 28502177 DOI: 10.1021/acs.molpharmaceut.6b01015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
43 Albisa A, Piacentini E, Sebastian V, Arruebo M, Santamaria J, Giorno L. Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharm Res 2017;34:1296-308. [PMID: 28342057 DOI: 10.1007/s11095-017-2146-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
44 Di Ianni ME, Islan GA, Chain CY, Castro GR, Talevi A, Vela ME. Interaction of Solid Lipid Nanoparticles and Specific Proteins of the Corona Studied by Surface Plasmon Resonance. Journal of Nanomaterials 2017;2017:1-11. [DOI: 10.1155/2017/6509184] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
45 Falk M. Nanodiamonds and nanoparticles as tumor cell radiosensitizers-promising results but an obscure mechanism of action. Ann Transl Med 2017;5:18. [PMID: 28164103 DOI: 10.21037/atm.2016.12.62] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]