BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Crit Rev Anal Chem 2018;48:293-304. [PMID: 29309211 DOI: 10.1080/10408347.2017.1422966] [Cited by in Crossref: 97] [Cited by in F6Publishing: 79] [Article Influence: 24.3] [Reference Citation Analysis]
Number Citing Articles
1 de Barros A, Braunger ML, de Oliveira RF, Ferreira M. Sensing Materials: Functionalized Advanced Carbon-Based Nanomaterials. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00014-5] [Reference Citation Analysis]
2 Manzoor A, Masood Siddiqi H, Shah A. Development of sulphonated co-polyimide based sensor for metal ions detection in aqueous media. Inorganic Chemistry Communications 2022;146:110088. [DOI: 10.1016/j.inoche.2022.110088] [Reference Citation Analysis]
3 Choudhari U, Jagtap S, Ramgir N, Debnath AK, Muthe KP. Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. Reviews in Chemical Engineering 2022;0. [DOI: 10.1515/revce-2022-0002] [Reference Citation Analysis]
4 Li Q, Yang Y, Du Y, Cai L, Ma Y, Yang J, Li M, Meng Q, Liu Q, Dong W. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124126] [Reference Citation Analysis]
5 Nayan Kumar H, Nagaraju D, Yhobu Z, Shivakumar P, Manjunatha Kumara K, Budagumpi S, Praveen B. Recent advances in on-site monitoring of heavy metal ions in the environment. Microchemical Journal 2022;182:107894. [DOI: 10.1016/j.microc.2022.107894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Jesus W, Magalhães F, Urbina M, Oliveira D, Cunha T, Adriano R. Modified parallel plate method for electromagnetic characterization of thin films in the microwave range. Measurement 2022;204:112069. [DOI: 10.1016/j.measurement.2022.112069] [Reference Citation Analysis]
7 Kushwaha CS, Singh P, Shukla SK, Chehimi MM. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B 2022;284:115856. [DOI: 10.1016/j.mseb.2022.115856] [Reference Citation Analysis]
8 Yousefi A, Aghaie H, Giahi M, Maleknia L. Determination of Cd2+ and Pb2+ by polyindole/Mn2O3 nanocomposite and polyindole/Mn2O3/polyaniline nanofibers modified glassy carbon electrode. Chem Pap . [DOI: 10.1007/s11696-022-02343-5] [Reference Citation Analysis]
9 Xiao XY, Zhao YH, Li YY, Song ZY, Chen SH, Huang HQ, Yang M, Li PH, Huang XJ. General Strategies to Construct Highly Efficient Sensing Interfaces for Metal Ions Detection from the Perspective of Catalysis. Anal Chem 2022. [PMID: 36150119 DOI: 10.1021/acs.analchem.2c01797] [Reference Citation Analysis]
10 Cui W, Ren Z, Song Y, Ren CL. Development and potential for point-of-care heavy metal sensing using microfluidic systems: A brief review. Sensors and Actuators A: Physical 2022;344:113733. [DOI: 10.1016/j.sna.2022.113733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Salinas G, Frontana-uribe BA. Electrochemical Analysis of Heavy Metal Ions Using Conducting Polymer Interfaces. Electrochem 2022;3:492-506. [DOI: 10.3390/electrochem3030034] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Xu X, Yang S, Wang Y, Qian K. Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Analytical Chemistry 2022;2:100020. [DOI: 10.1016/j.greeac.2022.100020] [Reference Citation Analysis]
13 Sawan S, Errachid A, Maalouf R, Jaffrezic-renault N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116748] [Reference Citation Analysis]
14 Nogueira Pedroza Dias Mello HJ, Mulato M. Impedimetric and Capacitive Transducer Platform for Chemical Sensors Based on Electrodeposited Polyaniline Thin Films. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c02736] [Reference Citation Analysis]
15 Munusamy S, Sivasankaran RP, Sivaranjan K, Sabhapathy P, Narayanan V, Mohammad F, Sagadevan S. Vanadium-PEDOT-PANI hybrid nanocomposite modified glassy carbon electrode for enhanced electrochemical and photocatalytic activities. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.140924] [Reference Citation Analysis]
16 Ibrahium HA, Awwad NS, Gado MA, Hassanin MA, Nayl AA, Atia BM. Physico-Chemical Aspects on Uranium and Molybdenum Extraction from Aqueous Solution by Synthesized Phosphinimine Derivative Chelating Agent. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02374-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Nag A, Nuthalapati S, Mukhopadhyay SC. Carbon Fiber/Polymer-Based Composites for Wearable Sensors: A Review. IEEE Sensors J 2022;22:10235-45. [DOI: 10.1109/jsen.2022.3170313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Eddaif L, Felhősi I, Shaban A. In-situ electrochemical and piezogravimetric studies on the application of macrocyclic resorcinarene tetramer in the development of chemically-modified heavy metals ions detection platform in aqueous media. Arabian Journal of Chemistry 2022;15:103780. [DOI: 10.1016/j.arabjc.2022.103780] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ashouri M, Khaleghian S, Emami A. Reduced-order modeling of conductive polymer pressure sensors using finite element simulations and deep neural networks. Struct Multidisc Optim 2022;65. [DOI: 10.1007/s00158-022-03237-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ragheb E, Shamsipur M, Jalali F, Mousavi F. Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. Journal of Environmental Chemical Engineering 2022;10:107297. [DOI: 10.1016/j.jece.2022.107297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Halim EM, Chemchoub S, El Attar A, Salih FE, Oularbi L, El Rhazi M. Recent Advances in Anode Metallic Catalysts Supported on Conducting Polymer-Based Materials for Direct Alcohol Fuel Cells. Front Energy Res 2022;10:843736. [DOI: 10.3389/fenrg.2022.843736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Arooj M, Parambath JBM, Ali N, Khan A, Malik S, Bilal M, Mohamed AA. Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences. [DOI: 10.1080/10408436.2022.2049697] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
23 Daban N, Orman EB, Meyancı L, Altındal A, Özer M, Özkaya AR. Electrochemical, spectroelectrochemical, electrocatalytic oxygen reducing, and heavy metal ion sensing properties of novel tetrakis-[4-((2, 8-bis (trifluoromethyl) quinolin-4-yl) oxyl)] substituted metallophthalocyanines. Journal of Molecular Structure 2022;1250:131707. [DOI: 10.1016/j.molstruc.2021.131707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Saikrithika S, Shaju A, Dinesh B, Kumar AS. In-situ scanning electrochemical microscopy interrogation on open-circuit release of toxic Ni2+ ion from Ni-containing carbon nanomaterials and nickel-hexacyanoferrate formation in physiological pH and its thiol-electrocatalysis relevance. Electrochimica Acta 2022;405:139806. [DOI: 10.1016/j.electacta.2021.139806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Amani AM, Alami A, Shafiee M, Sanaye R, Dehghani FS, Atefi M, Zare MA, Gheisari F. A highly sensitive electrochemical biosensor for dopamine and uric acid in the presence of a high concentration of ascorbic acid. Chem Pap . [DOI: 10.1007/s11696-021-01929-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Fan S, Khuntia S, Ahn CH, Zhang B, Tai L. Electrochemical Devices to Monitor Ionic Analytes for Healthcare and Industrial Applications. Chemosensors 2022;10:22. [DOI: 10.3390/chemosensors10010022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Senthil T, Dutta K, Dhamodharan D, Divakaran N, Wu L. Conjugated polymers-based sensors for detection of water pollutants. Conjugated Polymers for Next-Generation Applications 2022. [DOI: 10.1016/b978-0-12-823442-6.00014-3] [Reference Citation Analysis]
28 Khan SM, Saleemi S, Mannan HA. Toxicology, Stability, and Recycling of Organic–Inorganic Nanohybrids. Materials Horizons: From Nature to Nanomaterials 2022. [DOI: 10.1007/978-981-19-4538-0_22] [Reference Citation Analysis]
29 Aigbe UO, Onyancha RB, Ukhurebor KE, Osibote OA, Ama OM, Atagana HI, Ogbemudia PO, Akanji SP. Electrochemical Detection of Heavy Metals. Modified Nanomaterials for Environmental Applications 2022. [DOI: 10.1007/978-3-030-85555-0_3] [Reference Citation Analysis]
30 Ramanavicius S, Deshmukh MA, Apetrei R, Ramanaviciene A, Plikusiene I, Morkvenaite-vilkonciene I, Thorat HN, Shirsat MD, Ramanavicius A. Conducting polymers—versatile tools in analytical systems for the determination of biomarkers and biologically active compounds. The Detection of Biomarkers 2022. [DOI: 10.1016/b978-0-12-822859-3.00002-x] [Reference Citation Analysis]
31 Meskher H, Achi F, Ha S, Berregui B, Babanini F, Belkhalfa H. Sensitive rGO/MOF based electrochemical sensor for penta-chlorophenol detection: a novel artificial neural network (ANN) application. Sens Diagn . [DOI: 10.1039/d2sd00100d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Raza S, Li X, Soyekwo F, Liao D, Xiang Y, Liu C. A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. European Polymer Journal 2021;160:110773. [DOI: 10.1016/j.eurpolymj.2021.110773] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
33 Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-manzari M. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J Inorg Organomet Polym 2021;31:4443-62. [DOI: 10.1007/s10904-021-02118-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
34 Al-refai HH, Ganash AA, Hussein MA. Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions. Chem Pap . [DOI: 10.1007/s11696-021-01864-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Al-refai HH, Ganash AA, Hussein MA. Sensitive and selective voltammetric sensor based on polythiophene nanocomposite mixed MWCNT-G for the determination of Tartrazine. Synthetic Metals 2021;280:116875. [DOI: 10.1016/j.synthmet.2021.116875] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Kumar S, Nanda Srivastva A. Application of Carbon Nanomaterials Decorated Electrochemical Sensor for Analysis of Environmental Pollutants. Analytical Chemistry - Advancement, Perspectives and Applications 2021. [DOI: 10.5772/intechopen.96538] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wysocka‐żołopa M, Breczko J, Grądzka E, Basa A, Goclon J, Dubis A, Winkler K. Oxidized MWCNTs as an Oxidizing Agent and Dopant in MWCNT@Polypyrrole Composite Formation**. ChemElectroChem 2021;8:3049-63. [DOI: 10.1002/celc.202100566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Kang X, Song Y, Zhao J, Li Y. Simultaneous determination of paracetamol and Dopamine, and detection of bisphenol a using Three-dimensional interconnected porous carbon functionalized with ionic liquid. Journal of Electroanalytical Chemistry 2021;895:115482. [DOI: 10.1016/j.jelechem.2021.115482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Królicka A, Zarębski J, Bobrowski A. Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. Membranes (Basel) 2021;11:524. [PMID: 34357176 DOI: 10.3390/membranes11070524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Ong CS, Ng QH, Low SC. Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. Monatsh Chem 2021;152:705-23. [DOI: 10.1007/s00706-021-02802-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 Mei B, Qin Y, Agbolaghi S. A review on supramolecules/nanocomposites based on carbonic precursors and dielectric/conductive polymers and their applications. Materials Science and Engineering: B 2021;269:115181. [DOI: 10.1016/j.mseb.2021.115181] [Reference Citation Analysis]
42 Salhi O, Ez‐zine T, El Rhazi M. Hybrid Materials Based on Conducting Polymers for Nitrite Sensing: A Mini Review. Electroanalysis 2021;33:1681-90. [DOI: 10.1002/elan.202100033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
43 Xu QQ, Xia X, Zhu M, Xu LH, Zhang YX, Li SS. Cobalt encapsulated in bamboo-like N-doped carbon nanotubes for highly sensitive electroanalysis of Pb(II): enhancement based on adsorption and catalysis. Anal Methods 2021;13:2147-56. [PMID: 33881025 DOI: 10.1039/d0ay02330b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
44 Surucu O. Trace determination of heavy metals and electrochemical removal of lead from drinking water. Chem Pap 2021;75:4227-38. [DOI: 10.1007/s11696-021-01662-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Ture SA, Patil VB, Yelamaggad CV, Martínez‐máñez R, Abbaraju V. Understanding of mechanistic perspective in sensing of energetic nitro compounds through spectroscopic and electrochemical studies. J Appl Polym Sci 2021;138:50776. [DOI: 10.1002/app.50776] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021;13:974. [PMID: 33810074 DOI: 10.3390/polym13060974] [Cited by in Crossref: 73] [Cited by in F6Publishing: 73] [Article Influence: 73.0] [Reference Citation Analysis]
47 Momina, Ahmad K. Study of different polymer nanocomposites and their pollutant removal efficiency: Review. Polymer 2021;217:123453. [DOI: 10.1016/j.polymer.2021.123453] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
48 Berlina AN, Komova NS, Zherdev AV, Dzantiev BB. Combination of phenylboronic acid and oligocytosine for selective and specific detection of lead(ii) by lateral flow test strip. Anal Chim Acta 2021;1155:338318. [PMID: 33766321 DOI: 10.1016/j.aca.2021.338318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials (Basel) 2021;11:371. [PMID: 33540587 DOI: 10.3390/nano11020371] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 67.0] [Reference Citation Analysis]
50 Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, Ama OM, Adetunji CO, Siloko IU. Effect of hexavalent chromium on the environment and removal techniques: A review. Journal of Environmental Management 2021;280:111809. [DOI: 10.1016/j.jenvman.2020.111809] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 63.0] [Reference Citation Analysis]
51 Samukaite-bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;610:125750. [DOI: 10.1016/j.colsurfa.2020.125750] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 36.0] [Reference Citation Analysis]
52 Jiang Y, Shen L, Ma J, Ma H, Su Y, Zhu N. Wearable Porous Au Smartsensors for On-Site Detection of Multiple Metal Ions. Anal Chem 2021;93:2603-9. [DOI: 10.1021/acs.analchem.0c04701] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
53 El-shahawi MS, Alsibaai AA, Bashammakh AS, Al-ariqei HK. A highly sensitive electrochemical probe for trace determination and chemical speciation of lead in water and foodstuffs using Thorin-I as a selective chelating agent. Chem Pap 2021;75:2395-406. [DOI: 10.1007/s11696-020-01500-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Palanna M, Aralekallu S, Keshavananda Prabhu C, Sajjan VA, Mounesh, Sannegowda LK. Nanomolar detection of mercury(II) using electropolymerized phthalocyanine film. Electrochimica Acta 2021;367:137519. [DOI: 10.1016/j.electacta.2020.137519] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
55 Perrachione F, Dalmasso PR, Gutierrez FA, Rivas GA. Double-walled carbon nanotubes functionalized with Allium sativum (garlic extract): Analytical applications for Pb(II) electrochemical sensing. Microchemical Journal 2021;160:105653. [DOI: 10.1016/j.microc.2020.105653] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
56 Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020;13:E49. [PMID: 33375584 DOI: 10.3390/polym13010049] [Cited by in Crossref: 105] [Cited by in F6Publishing: 111] [Article Influence: 52.5] [Reference Citation Analysis]
57 Ardalani M, Shamsipur M, Besharati-seidani A. A new generation of highly sensitive potentiometric sensors based on ion imprinted polymeric nanoparticles/multiwall carbon nanotubes/polyaniline/graphite electrode for sub-nanomolar detection of lead(II) ions. Journal of Electroanalytical Chemistry 2020;879:114788. [DOI: 10.1016/j.jelechem.2020.114788] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
58 Aigbe UO, Osibote OA. A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering 2020;8:104503. [DOI: 10.1016/j.jece.2020.104503] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 19.0] [Reference Citation Analysis]
59 Bodkhe GA, Hedau BS, Deshmukh MA, Patil HK, Shirsat SM, Phase DM, Pandey KK, Shirsat MD. Detection of Pb(II): Au Nanoparticle Incorporated CuBTC MOFs. Front Chem 2020;8:803. [PMID: 33195028 DOI: 10.3389/fchem.2020.00803] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
60 He Z, Yin H, Chang CC, Wang G, Liang X. Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection. Biosensors (Basel) 2020;10:E167. [PMID: 33172098 DOI: 10.3390/bios10110167] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
61 Ramadhan AA, Ibrahim FT, Nasir EM. The Preparing and Characterization of Nanocomposite (PTh/SWCNT) for NO2 Gas Sensing. J Phys : Conf Ser 2020;1660:012093. [DOI: 10.1088/1742-6596/1660/1/012093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zeybek B, Üğe A. Development of carbon-based sensors for electrochemical quantification of vitamins B2 and B6 at nanomolar levels. Chem Pap 2021;75:1323-39. [DOI: 10.1007/s11696-020-01387-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
63 Bodkhe GA, Hedau BS, Deshmukh MA, Patil HK, Shirsat SM, Phase DM, Pandey KK, Shirsat MD. Selective and sensitive detection of lead Pb(II) ions: Au/SWNT nanocomposite-embedded MOF-199. J Mater Sci 2021;56:474-87. [DOI: 10.1007/s10853-020-05285-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
64 Katowah DF, Hussein MA, Alam M, Ismail SH, Osman O, Sobahi T, Asiri AM, Ahmed J, Rahman MM. Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A Selective Fe3+ ionic sensor. Journal of Alloys and Compounds 2020;834:155020. [DOI: 10.1016/j.jallcom.2020.155020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
65 Lo M, Ktari N, Gningue-sall D, Madani A, Aaron SE, Aaron J, Mekhalif Z, Delhalle J, Chehimi MM. Polypyrrole: a reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water. emergent mater 2020;3:815-39. [DOI: 10.1007/s42247-020-00119-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
66 Sall ML, Fall B, Diédhiou I, Dièye EH, Lo M, Diaw AKD, Gningue-sall D, Raouafi N, Fall M. Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review. Chemistry Africa 2020;3:499-512. [DOI: 10.1007/s42250-020-00157-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
67 Cui X, Yang B, Zhao S, Li X, Qiao M, Mao R, Wang Y, Zhao X. Electrochemical sensor based on ZIF-8@dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel (II) detection. Sensors and Actuators B: Chemical 2020;315:128091. [DOI: 10.1016/j.snb.2020.128091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
68 Zhang Y, Sun Y, Cai L, Gao Y, Cai Y. Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement 2020;158:107742. [DOI: 10.1016/j.measurement.2020.107742] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
69 Akhtar M, Tahir A, Zulfiqar S, Hanif F, Warsi MF, Agboola PO, Shakir I. Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synthetic Metals 2020;265:116410. [DOI: 10.1016/j.synthmet.2020.116410] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
70 Tan Z, Wu W, Feng C, Wu H, Zhang Z. Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage. Mikrochim Acta 2020;187:414. [PMID: 32602018 DOI: 10.1007/s00604-020-04393-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
71 Al-gahouari T, Bodkhe G, Sayyad P, Ingle N, Mahadik M, Shirsat SM, Deshmukh M, Musahwar N, Shirsat M. Electrochemical Sensor: L-Cysteine Induced Selectivity Enhancement of Electrochemically Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Hybrid for Detection of Lead (Pb2+) Ions. Front Mater 2020;7:68. [DOI: 10.3389/fmats.2020.00068] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
72 Fakude CT, Arotiba OA, Mabuba N. Electrochemical aptasensing of cadmium (II) on a carbon black-gold nano-platform. Journal of Electroanalytical Chemistry 2020;858:113796. [DOI: 10.1016/j.jelechem.2019.113796] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
73 Zubair RM, Karabörk M, Uruş S, Tümer M. Synthesis and Characterization of Graphene Based Hybrid Ligands and Their Metal Complexes: Investigation of Chemosensor and Catalytic Properties. J Inorg Organomet Polym 2020;30:2774-88. [DOI: 10.1007/s10904-019-01428-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Li X, Row KH. Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water. Analyst 2020;145:2958-65. [DOI: 10.1039/c9an02556a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
75 Afreen S, Talreja N, Chauhan D, Ashfaq M. Polymer/metal/carbon-based hybrid materials for the detection of heavy metal ions. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier; 2020. pp. 335-53. [DOI: 10.1016/b978-0-12-821354-4.00015-7] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
76 Kava AA, Beardsley C, Hofstetter J, Henry CS. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. Anal Chim Acta 2020;1103:58-66. [PMID: 32081189 DOI: 10.1016/j.aca.2019.12.047] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
77 Tan RX, Ibsen M, Tjin SC. Optical Fiber Refractometer Based Metal Ion Sensors. Chemosensors 2019;7:63. [DOI: 10.3390/chemosensors7040063] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
78 Deshmukh MA, Jeon JY, Ha TJ. Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron 2020;150:111919. [PMID: 31787449 DOI: 10.1016/j.bios.2019.111919] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
79 Li X, Row KH. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3885-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
80 Sun J, Gan Y, Liang T, Zhou S, Wang X, Wan H, Wang P. Signal enhancement of electrochemical DNA biosensors for the detection of trace heavy metals. Current Opinion in Electrochemistry 2019;17:23-9. [DOI: 10.1016/j.coelec.2019.04.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
81 Buica G, Ivanov AA, Lazar I, Tatu G, Omocea C, Birzan L, Ungureanu E. Colorimetric and voltammetric sensing of mercury ions using 2,2′-(ethane-1,2-diylbis((2-(azulen-2-ylamino)-2-oxoethyl)azanediyl))diacetic acid. Journal of Electroanalytical Chemistry 2019;849:113351. [DOI: 10.1016/j.jelechem.2019.113351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
82 Parshina AV, Titova TS, Evdokimova DD, Bobreshova OV, Safronova EY, Prikhno IA, Yaroslavtsev AB. Hybrid Materials Based on MF-4SC Membranes and Carbon Nanotubes: Transport Properties and Characteristics of DP-sensors in Hydrophobic Amino Acid Solutions. Membr Membr Technol 2019;1:220-8. [DOI: 10.1134/s2517751619040073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
83 Yu SH, Lee CS, Kim TH. Electrochemical Detection of Ultratrace Lead Ion through Attaching and Detaching DNA Aptamer from Electrochemically Reduced Graphene Oxide Electrode. Nanomaterials (Basel) 2019;9:E817. [PMID: 31151250 DOI: 10.3390/nano9060817] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
84 Eddaif L, Shaban A, Telegdi J. Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. International Journal of Environmental Analytical Chemistry 2019;99:824-53. [DOI: 10.1080/03067319.2019.1616708] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 14.3] [Reference Citation Analysis]
85 Apel PY, Bobreshova OV, Volkov AV, Volkov VV, Nikonenko VV, Stenina IA, Filippov AN, Yampolskii YP, Yaroslavtsev AB. Prospects of Membrane Science Development. Membr Membr Technol 2019;1:45-63. [DOI: 10.1134/s2517751619020021] [Cited by in Crossref: 89] [Cited by in F6Publishing: 91] [Article Influence: 29.7] [Reference Citation Analysis]
86 Wei Y, Zeng Q, Wang M, Huang J, Guo X, Wang L. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosensors and Bioelectronics 2019;131:156-62. [DOI: 10.1016/j.bios.2019.02.015] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
87 Ayranci R, Ak M. An Electrochemical Sensor Platform for Sensitive Detection of Iron (III) Ions Based on Pyrene-Substituted Poly(2,5-dithienylpyrrole). J Electrochem Soc 2019;166:B291-6. [DOI: 10.1149/2.0101906jes] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
88 Vikrant K, Kumar V, Vellingiri K, Kim K. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Res 2019;12:1489-507. [DOI: 10.1007/s12274-019-2309-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
89 Ghosh S, Manna R, Dey S. Epoxy-based polymer incorporating 1-naphthylamine and sebacic acid moieties: A selective fluorescent sensor for ferric ions. Journal of Molecular Structure 2019;1180:406-10. [DOI: 10.1016/j.molstruc.2018.12.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Berlina AN, Zherdev AV, Dzantiev BB. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Mikrochim Acta 2019;186:172. [PMID: 30767144 DOI: 10.1007/s00604-018-3168-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
91 Viter R, Iatsunskyi I. Metal Oxide Nanostructures in Sensing. Nanomaterials Design for Sensing Applications. Elsevier; 2019. pp. 41-91. [DOI: 10.1016/b978-0-12-814505-0.00002-3] [Cited by in Crossref: 14] [Article Influence: 4.7] [Reference Citation Analysis]
92 Lu L, Zhou L, Chen J, Yan F, Liu J, Dong X, Xi F, Chen P. Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano 2018;12:12673-81. [PMID: 30485066 DOI: 10.1021/acsnano.8b07564] [Cited by in Crossref: 96] [Cited by in F6Publishing: 86] [Article Influence: 24.0] [Reference Citation Analysis]
93 Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2019;91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
94 Atta NF, Ahmed YM, Galal A. Layered-designed composite sensor based on crown ether/Nafion®/polymer/carbon nanotubes for determination of norepinephrine, paracetamol, tyrosine and ascorbic acid in biological fluids. Journal of Electroanalytical Chemistry 2018;828:11-23. [DOI: 10.1016/j.jelechem.2018.09.029] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
95 Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2019;119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Cited by in Crossref: 103] [Cited by in F6Publishing: 84] [Article Influence: 25.8] [Reference Citation Analysis]
96 Celiesiute R, Ramanaviciene A, Gicevicius M, Ramanavicius A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit Rev Anal Chem 2019;49:195-208. [PMID: 30285474 DOI: 10.1080/10408347.2018.1499009] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
97 Xu S, Lin G, Zhao W, Wu Q, Luo J, Wei W, Liu X, Zhu Y. Necklace-like Molecularly Imprinted Nanohybrids Based on Polymeric Nanoparticles Decorated Multiwalled Carbon Nanotubes for Highly Sensitive and Selective Melamine Detection. ACS Appl Mater Interfaces 2018;10:24850-9. [DOI: 10.1021/acsami.8b08558] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]