BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Attaluri A, Kandala SK, Zhou H, Wabler M, DeWeese TL, Ivkov R. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. Int J Hyperthermia 2020;37:108-19. [PMID: 33426990 DOI: 10.1080/02656736.2020.1798514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Bakuzis AF. Nanomedicine and thermal therapies: where are we going? Int J Hyperthermia 2020;37:1-3. [PMID: 33426998 DOI: 10.1080/02656736.2020.1854355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Beola L, Grazú V, Fernández-Afonso Y, Fratila RM, de Las Heras M, de la Fuente JM, Gutiérrez L, Asín L. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution. ACS Appl Mater Interfaces 2021;13:12982-96. [PMID: 33709682 DOI: 10.1021/acsami.1c02338] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Lafuente-Gómez N, Milán-Rois P, García-Soriano D, Luengo Y, Cordani M, Alarcón-Iniesta H, Salas G, Somoza Á. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers (Basel) 2021;13:4095. [PMID: 34439250 DOI: 10.3390/cancers13164095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Palzer J, Eckstein L, Slabu I, Reisen O, Neumann UP, Roeth AA. Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. Nanomaterials (Basel) 2021;11:3013. [PMID: 34835777 DOI: 10.3390/nano11113013] [Reference Citation Analysis]
5 Kouzoudis D, Samourgkanidis G, Kolokithas-ntoukas A, Zoppellaro G, Spiliotopoulos K. Magnetic Hyperthermia in the 400–1,100 kHz Frequency Range Using MIONs of Condensed Colloidal Nanocrystal Clusters. Front Mater 2021;8:638019. [DOI: 10.3389/fmats.2021.638019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J Clust Sci. [DOI: 10.1007/s10876-021-02213-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kandala SK, Sharma A, Mirpour S, Liapi E, Ivkov R, Attaluri A. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Int J Hyperthermia 2021;38:611-22. [PMID: 33853493 DOI: 10.1080/02656736.2021.1913244] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tsiapla AR, Kalimeri AA, Maniotis N, Myrovali E, Samaras T, Angelakeris M, Kalogirou O. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Int J Hyperthermia 2021;38:511-22. [PMID: 33784924 DOI: 10.1080/02656736.2021.1899310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]