BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu L, Partanen A, Talcott MR, Gach HM, Greco SC, Henke LE, Contreras JA, Zoberi I, Hallahan DE, Chen H, Altman MB. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia 2019;36:1147-59. [PMID: 31752562 DOI: 10.1080/02656736.2019.1685684] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021;38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yang Y, Pacia CP, Ye D, Zhu L, Baek H, Yue Y, Yuan J, Miller MJ, Cui J, Culver JP, Bruchas MR, Chen H. Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation. Brain Stimul 2021;14:790-800. [PMID: 33989819 DOI: 10.1016/j.brs.2021.04.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. International Journal of Hyperthermia 2020;37:1159-73. [DOI: 10.1080/02656736.2020.1825836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020;23:101561. [PMID: 32954229 DOI: 10.1016/j.isci.2020.101561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Feddersen TV, Hernandez-Tamames JA, Franckena M, van Rhoon GC, Paulides MM. Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers (Basel) 2020;13:E31. [PMID: 33374176 DOI: 10.3390/cancers13010031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Pattyn A, Kratkiewicz K, Alijabbari N, Carson PL, Littrup P, Fowlkes JB, Duric N, Mehrmohammadi M. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Med Phys 2022. [PMID: 35759729 DOI: 10.1002/mp.15829] [Reference Citation Analysis]
7 de Maar JS, Suelmann BBM, Braat MNGJA, van Diest PJ, Vaessen HHB, Witkamp AJ, Linn SC, Moonen CTW, van der Wall E, Deckers R. Phase I feasibility study of Magnetic Resonance guided High Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the i-GO study. BMJ Open 2020;10:e040162. [PMID: 33243800 DOI: 10.1136/bmjopen-2020-040162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]