BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yount NY, Weaver DC, Lee EY, Lee MW, Wang H, Chan LC, Wong GCL, Yeaman MR. Unifying structural signature of eukaryotic α-helical host defense peptides. Proc Natl Acad Sci U S A 2019;116:6944-53. [PMID: 30877253 DOI: 10.1073/pnas.1819250116] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020;11:2177. [PMID: 33072081 DOI: 10.3389/fimmu.2020.02177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yount NY, Weaver DC, de Anda J, Lee EY, Lee MW, Wong GCL, Yeaman MR. Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm. Front Immunol 2020;11:1873. [PMID: 33013838 DOI: 10.3389/fimmu.2020.01873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Filler EE, Liu Y, Solis NV, Wang L, Diaz LF, Edwards JE Jr, Filler SG, Yeaman MR. Identification of Candida glabrata Transcriptional Regulators That Govern Stress Resistance and Virulence. Infect Immun 2021;89:e00146-20. [PMID: 33318139 DOI: 10.1128/IAI.00146-20] [Reference Citation Analysis]
4 Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. Biochim Biophys Acta Biomembr 2020;1862:183302. [PMID: 32311341 DOI: 10.1016/j.bbamem.2020.183302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021;7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 23.0] [Reference Citation Analysis]
6 Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Front Immunol 2020;11:1629. [PMID: 32849553 DOI: 10.3389/fimmu.2020.01629] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
7 Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019;10:2866. [PMID: 31921046 DOI: 10.3389/fmicb.2019.02866] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 27.0] [Reference Citation Analysis]
8 Waghu FH, Gawde U, Gomatam A, Coutinho E, Idicula‐thomas S. A QSAR modeling approach for predicting myeloid antimicrobial peptides with high sequence similarity. Chem Biol Drug Des 2020;96:1408-17. [DOI: 10.1111/cbdd.13749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Lim EJ, Leng EGT, Tram NDT, Periayah MH, Ee PLR, Barkham TMS, Poh ZS, Verma NK, Lakshminarayanan R. Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B. Molecules 2022;27:1438. [PMID: 35209228 DOI: 10.3390/molecules27041438] [Reference Citation Analysis]
10 Ting DSJ, Beuerman RW, Dua HS, Lakshminarayanan R, Mohammed I. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Front Immunol 2020;11:983. [PMID: 32528474 DOI: 10.3389/fimmu.2020.00983] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
11 Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine‐Mediated Ion Specific Effects Enable Salt Tolerance of a Pore‐Forming Marine Antimicrobial Peptide. Angewandte Chemie. [DOI: 10.1002/ange.202108501] [Reference Citation Analysis]
12 Portelinha J, Heilemann K, Jin J, Angeles-Boza AM. Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. J Inorg Biochem 2021;219:111391. [PMID: 33770667 DOI: 10.1016/j.jinorgbio.2021.111391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020;10:326. [PMID: 32733816 DOI: 10.3389/fcimb.2020.00326] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
14 Wu Y, Xia G, Zhang W, Chen K, Bi Y, Liu S, Zhang W, Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 2020;8:9173-96. [DOI: 10.1039/d0tb01916j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine-Mediated Ion Specific Effects Enable Salt Tolerance of a Pore-Forming Marine Antimicrobial Peptide. Angew Chem Int Ed Engl 2022;61:e202108501. [PMID: 35352449 DOI: 10.1002/anie.202108501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Buccini DF, Cardoso MH, Franco OL. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2020;10:612931. [PMID: 33614528 DOI: 10.3389/fcimb.2020.612931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Erviana R, Saengkun Y, Rungsa P, Jangpromma N, Tippayawat P, Klaynongsruang S, Daduang J, Daduang S. Novel Antimicrobial Peptides from a Cecropin-Like Region of Heteroscorpine-1 from Heterometrus laoticus Venom with Membrane Disruption Activity. Molecules 2021;26:5872. [PMID: 34641415 DOI: 10.3390/molecules26195872] [Reference Citation Analysis]
18 Chou S, Zhang S, Guo H, Chang Y, Zhao W, Mou X. Targeted Antimicrobial Agents as Potential Tools for Modulating the Gut Microbiome. Front Microbiol 2022;13:879207. [DOI: 10.3389/fmicb.2022.879207] [Reference Citation Analysis]
19 Dai C, Zhou M, Jiang W, Xiao X, Zou J, Qian Y, Cong Z, Ji Z, Liu L, Xie J, Qiao Z, Liu R. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s. Journal of Materials Science & Technology 2020;59:220-6. [DOI: 10.1016/j.jmst.2020.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
20 Pedron CN, de Oliveira CS, da Silva AF, Andrade GP, da Silva Pinhal MA, Cerchiaro G, da Silva Junior PI, da Silva FD, Torres MDT, Oliveira VX. The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. European Journal of Pharmaceutical Sciences 2019;136:104952. [DOI: 10.1016/j.ejps.2019.06.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Wang G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci 2020;29:8-18. [PMID: 31361941 DOI: 10.1002/pro.3702] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
22 Czernek J, Brus J. Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020;21:E2700. [PMID: 32295042 DOI: 10.3390/ijms21082700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. Biophysics Rev 2021;2:011301. [DOI: 10.1063/5.0035731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 He J, Thomas MA, de Anda J, Lee MW, Van Why E, Simpson P, Wong GCL, Grayson MH, Volkman BF, Huppler AR. Chemokine CCL28 Is a Potent Therapeutic Agent for Oropharyngeal Candidiasis. Antimicrob Agents Chemother 2020;64:e00210-20. [PMID: 32423961 DOI: 10.1128/AAC.00210-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021;118:e1917623117. [PMID: 33372152 DOI: 10.1073/pnas.1917623117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. Biochim Biophys Acta Biomembr 2022;1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Reference Citation Analysis]