BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016;6:24995-5014. [DOI: 10.1039/c6ra00333h] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 19.3] [Reference Citation Analysis]
Number Citing Articles
1 Adeel M, Asif K, Alshabouna F, Canzonieri V, Rahman MM, Ansari SA, Güder F, Rizzolio F, Daniele S. Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles. Biosensors and Bioelectronics: X 2022;12:100256. [DOI: 10.1016/j.biosx.2022.100256] [Reference Citation Analysis]
2 Wu Z, Liu Q, Yang P, Chen H, Zhang Q, Li S, Tang Y, Zhang S. Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. Electrochem Energy Rev 2022;5:26. [DOI: 10.1007/s41918-022-00152-8] [Reference Citation Analysis]
3 Durai L, Badhulika S. Current Challenges and Developments in Perovskite-Based Electrochemical Biosensors for Effective Theragnostics of Neurological Disorders. ACS Omega 2022. [DOI: 10.1021/acsomega.2c05591] [Reference Citation Analysis]
4 Kurup CP, Mohd-naim NF, Keasberry NA, Zakaria SNA, Bansal V, Ahmed MU. Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum. ACS Omega. [DOI: 10.1021/acsomega.2c04300] [Reference Citation Analysis]
5 Hong SP, Zakaria SNA, Ahmed MU. Trends in the development of immunoassays for mycotoxins and food allergens using gold and carbon nanostructured material. Food Chemistry Advances 2022;1:100069. [DOI: 10.1016/j.focha.2022.100069] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022;147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
7 Sharafeldin M, Hein R, Davis JJ. Catalysed amplification of faradaic shotgun tagging in ultrasensitive electrochemical immunoassays. Chem Commun (Camb) 2022;58:9472-5. [PMID: 35942942 DOI: 10.1039/d2cc03509j] [Reference Citation Analysis]
8 Thapa S, Singh KR, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. Biosensors 2022;12:637. [DOI: 10.3390/bios12080637] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Aydın EB, Aydın M, Sezgintürk MK. Impedimetric Detection of Calreticulin by a Disposable Immunosensor Modified with a Single-Walled Carbon Nanotube-Conducting Polymer Nanocomposite. ACS Biomater Sci Eng 2022. [PMID: 35920068 DOI: 10.1021/acsbiomaterials.2c00499] [Reference Citation Analysis]
10 Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. Biosensors 2022;12:566. [DOI: 10.3390/bios12080566] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Zhou X, Schuh DA, Castle LM, Furst AL. Recent Advances in Signal Amplification to Improve Electrochemical Biosensing for Infectious Diseases. Front Chem 2022;10:911678. [DOI: 10.3389/fchem.2022.911678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yang M, Lu H, Liu S. Recent Advances of MXene-Based Electrochemical Immunosensors. Applied Sciences 2022;12:5630. [DOI: 10.3390/app12115630] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Bioscience 2022;47:101695. [DOI: 10.1016/j.fbio.2022.101695] [Reference Citation Analysis]
14 Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR, Mariúba LAM. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol 2022;:1-20. [PMID: 35394399 DOI: 10.1139/cjm-2021-0329] [Reference Citation Analysis]
15 Xifre‐perez E, Ferre‐borrull J, Marsal LF. Oligonucleotic Probes and Immunosensors Based on Nanoporous Anodic Alumina for Screening of Diseases. Adv Materials Technologies. [DOI: 10.1002/admt.202101591] [Reference Citation Analysis]
16 Ding R, Li Z, Xiong Y, Wu W, Yang Q, Hou X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit Rev Anal Chem 2022;:1-26. [PMID: 35235478 DOI: 10.1080/10408347.2022.2041391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Milosavljevic V, Mitrevska K, Adam V. Benefits of oxidation and size reduction of graphene/graphene oxide nanoparticles in biosensing application: Classification of graphene/graphene oxide nanoparticles. Sensors and Actuators B: Chemical 2022;353:131122. [DOI: 10.1016/j.snb.2021.131122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Roy S, Arshad F, Eissa S, Safavieh M, Alattas SG, Ahmed MU, Zourob M. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens Diagn 2022;1:87-105. [DOI: 10.1039/d1sd00017a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
19 Ul Haq I, Ijaz S, Riaz S, Sarwar MK, Ali HM. Application of Biosensors in Plant Disease Detection. Trends in Plant Disease Assessment 2022. [DOI: 10.1007/978-981-19-5896-0_8] [Reference Citation Analysis]
20 Patel M, Agrawal M, Srivastava A. Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater Adv 2022. [DOI: 10.1039/d2ma00427e] [Reference Citation Analysis]
21 Modak S, Mokarizadeh H, Karbassiyazdi E, Hosseinzadeh A, Esfahani MR. The AI-assisted removal and sensor-based detection of contaminants in the aquatic environment. Artificial Intelligence and Data Science in Environmental Sensing 2022. [DOI: 10.1016/b978-0-323-90508-4.00005-8] [Reference Citation Analysis]
22 Amiri M, Arshi S, Saberi RS. Recent advances in immunosensors for healthcare. The Detection of Biomarkers 2022. [DOI: 10.1016/b978-0-12-822859-3.00014-6] [Reference Citation Analysis]
23 Liew WJ, Kurup CP, Rizwan M, Ahmed MU. Electrochemical nano-aptasensor as potential diagnostic device for thrombin. Nanobioanalytical Approaches to Medical Diagnostics 2022. [DOI: 10.1016/b978-0-323-85147-3.00003-7] [Reference Citation Analysis]
24 Dandu NK, Chandaluri CG, Ramesh K, Saritha D, Mahender Reddy N, Ramesh GV. Carbon nanomaterials: Application as sensors for diagnostics. Advanced Nanomaterials for Point of Care Diagnosis and Therapy 2022. [DOI: 10.1016/b978-0-323-85725-3.00015-5] [Reference Citation Analysis]
25 Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
26 Duque-Ossa LC, García-Ferrera B, Reyes-Retana JA. Troponin I as a Biomarker for Early Detection of Acute Myocardial Infarction. Curr Probl Cardiol 2021;:101067. [PMID: 34826431 DOI: 10.1016/j.cpcardiol.2021.101067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Erdem Ö, Derin E, Zeibi Shirejini S, Sagdic K, Yilmaz EG, Yildiz S, Akceoglu GA, Inci F. Carbon‐Based Nanomaterials and Sensing Tools for Wearable Health Monitoring Devices. Adv Materials Technologies 2022;7:2100572. [DOI: 10.1002/admt.202100572] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
28 Mustafa RR, Sukor R, Eissa S, Shahrom AN, Saari N, Mohd Nor SM. Sensitive detection of mitragynine from Mitragyna speciosa Korth using an electrochemical immunosensor based on multiwalled carbon nanotubes/chitosan- modified carbon electrode. Sensors and Actuators B: Chemical 2021;345:130356. [DOI: 10.1016/j.snb.2021.130356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Nellaiappan S, Mandali PK, Prabakaran A, Krishnan UM. Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. Chemosensors 2021;9:182. [DOI: 10.3390/chemosensors9070182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Deepika Sandil, Srivastava S, Khatri R, Sharma K, Puri NK. Synthesis and fabrication of 2D Tungsten trioxide nanosheets based platform for impedimetric sensing of cardiac biomarker. Sensing and Bio-Sensing Research 2021;32:100423. [DOI: 10.1016/j.sbsr.2021.100423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chang Z, Xu Y, Shen Y. Ultrasensitive Electrochemical Immunoassay for Prostate Specific Antigen (PSA) Based Upon Silver-Functionalized Polyethyleneimine (PEI)–Silica Nanoparticles (NPs). Analytical Letters 2022;55:68-84. [DOI: 10.1080/00032719.2021.1916752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Livas D, Trachioti M, Banou S, Angelopoulou M, Economou A, Prodromidis M, Petrou P, Kakabakos S, Kokkinos C. 3D printed microcell featuring a disposable nanocomposite Sb/Sn immunosensor for quantum dot-based electrochemical determination of adulteration of ewe/goat’s cheese with cow’s milk. Sensors and Actuators B: Chemical 2021;334:129614. [DOI: 10.1016/j.snb.2021.129614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chinese Chemical Letters 2021;32:1593-602. [DOI: 10.1016/j.cclet.2020.12.054] [Cited by in Crossref: 43] [Cited by in F6Publishing: 51] [Article Influence: 43.0] [Reference Citation Analysis]
34 Popov A, Brasiunas B, Kausaite-minkstimiene A, Ramanaviciene A. Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. Chemosensors 2021;9:85. [DOI: 10.3390/chemosensors9040085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
35 Adhikari J, Mohd-naim NF, Ahmed MU. Graphene Nanoplatelets/Chitosan-Modified Electrochemical Immunosensor for the Label-Free Detection of Haptoglobin. IEEE Sensors J 2021;21:4176-83. [DOI: 10.1109/jsen.2020.3033167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Feng Y, Zhu J, Wang X, Wang A, Mei L, Yuan P, Feng J. New advances in accurate monitoring of breast cancer biomarkers by electrochemistry, electrochemiluminescence, and photoelectrochemistry. Journal of Electroanalytical Chemistry 2021;882:115010. [DOI: 10.1016/j.jelechem.2021.115010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Zumpano R, Polli F, D’agostino C, Antiochia R, Favero G, Mazzei F. Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools. Electrochem 2021;2:10-28. [DOI: 10.3390/electrochem2010002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
38 Kalkal A, Kadian S, Pradhan R, Manik G, Packirisamy G. Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensors. Mater Adv 2021;2:5513-41. [DOI: 10.1039/d1ma00251a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
39 Nandeshwar R, Kumar MS, Kondabagil K, Tallur S. Electrochemical Immunosensor Platform Using Low-Cost ENIG PCB Finish Electrodes: Application for SARS-CoV-2 Spike Protein Sensing. IEEE Access 2021;9:154368-77. [DOI: 10.1109/access.2021.3128668] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Adhikari J, Rizwan M, Dennany L, Ahmed MU. Electrochemiluminescence nanoimmunosensor for CD63 protein using a carbon nanochips/iron oxide/nafion-nanocomposite modified mesoporous carbon interface. Measurement 2021;170:108755. [DOI: 10.1016/j.measurement.2020.108755] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
41 Solanki S, Pandey CM, Gupta RK, Malhotra BD. Nanobioelectrochemistry: Fundamentals and biosensor applications. Frontiers of Nanoscience 2021. [DOI: 10.1016/b978-0-12-820055-1.00004-6] [Reference Citation Analysis]
42 Stine KJ, Bhattarai JK, Maruf MHU, Neupane D, Nepal B, Sondhi P. Nanostructured Materials for Glycan Based Applications. Comprehensive Glycoscience 2021. [DOI: 10.1016/b978-0-12-819475-1.00042-0] [Reference Citation Analysis]
43 Karaboğa MNS, Sezgintürk MK. Electrochemical immunosensors based on quantum dots. Electroanalytical Applications of Quantum Dot-Based Biosensors 2021. [DOI: 10.1016/b978-0-12-821670-5.00006-3] [Reference Citation Analysis]
44 Adhikari J, Rizwan M, Koh D, Keasberry NA, Ahmed MU. Electrochemical Study of Dimensional Specific Carbon Nanomaterials Modified Glassy Carbon Electrode for Highly Sensitive Label-free Detection of Immunoglobulin A. CAC 2020;16:833-42. [DOI: 10.2174/1573411015666190925152124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Zhou M, Ning S, Liu J, Waterhouse GI, Li L, Dong J, Ai S. Ultrasensitive Electrochemiluminescence Immunosensor Based on a Three-Dimensional Flower-Like Manganese Dioxide–Polyethyleneimine–Palladium Nanocomposite as the Signal Label for Detection of Avian Leukosis Virus Subgroup J. Analytical Letters 2021;54:1769-82. [DOI: 10.1080/00032719.2020.1825463] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Sharma A, Kameswara V. Synthetic Applications of Gold Nanoparticles in Research Advancement of Electrochemical Immunosensors. Trends in Applied Sciences Research 2020;15:151-167. [DOI: 10.3923/tasr.2020.151.167] [Reference Citation Analysis]
47 Lim SA, Lim TH, Ahmad AN. The Applications of Biosensing and Artificial Intelligence Technologies for Rapid Detection and Diagnosis of COVID-19 in Remote Setting. Medical Virology: From Pathogenesis to Disease Control 2020. [DOI: 10.1007/978-981-15-6006-4_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Azam NFN, Lim SA, Ahmed MU. Carbon Nanomaterials for Electrochemiluminescence-Based Immunosensors: Recent Advances and Applications. Nanobiomaterial Engineering 2020. [DOI: 10.1007/978-981-32-9840-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Vargis VS, Chandhana JP, Suneesh PV, Nair B, Satheesh Babu TG. Voltammetric immunosensing platform based on dual signal amplification using gold nanoparticle labels. IOP Conf Ser : Mater Sci Eng 2019;577:012103. [DOI: 10.1088/1757-899x/577/1/012103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
50 Matassan ND, Rizwan M, Mohd-naim NF, Tlili C, Ahmed MU. Graphene Nanoplatelets-Based Aptamer Biochip for the Detection of Lipocalin-2. IEEE Sensors J 2019;19:9592-9599. [DOI: 10.1109/jsen.2019.2927139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Harshavardhan S, Rajadas SE, Vijayakumar KK, Durai WA, Ramu A, Mariappan R. Electrochemical Immunosensors. Bioelectrochemical Interface Engineering 2019. [DOI: 10.1002/9781119611103.ch18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Bohli N, Belkilani M, Mora L, Abdelghani A. Antibody‐functionalised gold nanoparticles‐based impedimetric immunosensor: detection methods for better sensitivity. Micro & Nano Letters 2019;14:629-633. [DOI: 10.1049/mnl.2018.5587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Adhikari J, Keasberry NA, Mahadi AH, Yoshikawa H, Tamiya E, Ahmed MU. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Adv 2019;9:34283-92. [DOI: 10.1039/c9ra05016g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
54 Modena MM, Chawla K, Misun PM, Hierlemann A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem Biol 2018;13:1767-84. [PMID: 29381325 DOI: 10.1021/acschembio.7b01029] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
55 Pingarrón J, Campuzano S, González-cortés A, Yáñez-sedeño P. Electrochemical Immunosensors for Clinical Diagnostics. Encyclopedia of Interfacial Chemistry 2018. [DOI: 10.1016/b978-0-12-409547-2.13495-x] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
56 Zhang P, Huang H, Wang N, Li H, Shen D, Ma H. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Microchim Acta 2017;184:4037-45. [DOI: 10.1007/s00604-017-2437-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
57 Eissa S, Zourob M. Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim Acta 2017;184:2281-9. [DOI: 10.1007/s00604-017-2261-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
58 Jin J, Xie J, Shi Z, Fu Y, Li Q, Zhang S. A Novel Current-suppression-type Immunoassay of Tumor Markers Based on Gold Nanorods and Silver Nanoflowers. Chem Lett 2017;46:378-381. [DOI: 10.1246/cl.160917] [Reference Citation Analysis]
59 Yang J, Martinez DA, Chiang W. Synthesis, Characterization and Applications of Graphene Quantum Dots. Recent Trends in Nanomaterials 2017. [DOI: 10.1007/978-981-10-3842-6_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
60 Punter-villagrasa J, Colomer-farrarons J, del Campo FJ, Miribel-català P. Electrochemical Biosensors. Bioanalysis 2017. [DOI: 10.1007/978-3-319-64801-9_2] [Reference Citation Analysis]
61 Liu X, Li Q, Chen L, Zhou J, Liu M, Shen Y. One-step immobilization antibodies using ferrocene-containing thiol aromatic aldehyde for the fabrication of a label-free electrochemical immunosensor. RSC Adv 2016;6:114019-23. [DOI: 10.1039/c6ra24122k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]