BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yao J, Sun Y, Yang M, Duan Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 2012;22:14313. [DOI: 10.1039/c2jm31632c] [Cited by in Crossref: 99] [Cited by in F6Publishing: 74] [Article Influence: 9.9] [Reference Citation Analysis]
Number Citing Articles
1 Gnanasekar S, Palanisamy P, Jha PK, Murugaraj J, Kandasamy M, Mohamed Hussain AMK, Sivaperumal S. Natural Honeycomb Flavone Chrysin (5,7-dihydroxyflavone)-Reduced Graphene Oxide Nanosheets Fabrication for Improved Bactericidal and Skin Regeneration. ACS Sustainable Chem Eng 2018;6:349-63. [DOI: 10.1021/acssuschemeng.7b02603] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
2 Hwang YH, Chun HS, Ok KM, Lee K, Kwak K. Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules. Journal of Nanomaterials 2015;2015:1-9. [DOI: 10.1155/2015/917637] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
3 Ye X, Qin X, Yan X, Guo J, Huang L, Chen D, Wu T, Shi Q, Tan S, Cai X. π–π conjugations improve the long-term antibacterial properties of graphene oxide/quaternary ammonium salt nanocomposites. Chemical Engineering Journal 2016;304:873-81. [DOI: 10.1016/j.cej.2016.07.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
4 Yang M, Yao J, Liu Y, Duan Y. Sensitive detection of mercury (II) ion using wave length-tunable visible-emitting gold nanoclusters based on protein-templated synthesis. J Mater Res 2014;29:2416-24. [DOI: 10.1557/jmr.2014.271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Roy I, Rana D, Sarkar G, Bhattacharyya A, Saha NR, Mondal S, Pattanayak S, Chattopadhyay S, Chattopadhyay D. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv 2015;5:25357-64. [DOI: 10.1039/c4ra16197a] [Cited by in Crossref: 42] [Article Influence: 6.0] [Reference Citation Analysis]
6 Yao J, Yang M, Duan Y. Highly fluorescent CdTe nanocrystals: Synthesis, characterization, property, mechanism, and application as a sensor for biomolecule analysis. J Mater Res 2014;29:633-40. [DOI: 10.1557/jmr.2014.25] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
7 Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci: Mater Med 2017;28. [DOI: 10.1007/s10856-017-5874-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
8 Jiang S, Song R, Hu Z, Xin Y, Huang G, He D. Millimeter wave phased array antenna based on highly conductive graphene-assembled film for 5G applications. Carbon 2022;196:493-8. [DOI: 10.1016/j.carbon.2022.05.026] [Reference Citation Analysis]
9 Muthurasu A, Ganesh V. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl Biochem Biotechnol 2014;174:945-59. [DOI: 10.1007/s12010-014-1019-7] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]
10 Ashour RM, Abdelhamid HN, Abdel-magied AF, Abdel-khalek AA, Ali MM, Uheida A, Muhammed M, Zou X, Dutta J. Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets. Solvent Extraction and Ion Exchange 2017;35:91-103. [DOI: 10.1080/07366299.2017.1287509] [Cited by in Crossref: 50] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
11 Yao J, Liu C, Liu L, Chen M, Yang M. An Electrochemical Sensor for Sensitive Determination of L-cysteine and Its Electrochemical Kinetics on AgNPs/GQDs/GCE Composite Modified Electrode. J Electrochem Soc 2018;165:B551-8. [DOI: 10.1149/2.0061813jes] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
12 Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release 2018;286:64-73. [DOI: 10.1016/j.jconrel.2018.07.034] [Cited by in Crossref: 99] [Cited by in F6Publishing: 73] [Article Influence: 24.8] [Reference Citation Analysis]
13 Yao J, Yue T, Huang C, Wang H. A magnified aptamer fluorescence sensor based on the metal organic frameworks adsorbed DNA with enzyme catalysis amplification for ultra-sensitive determination of ATP and its logic gate operation. Bioorg Chem 2021;114:105020. [PMID: 34328850 DOI: 10.1016/j.bioorg.2021.105020] [Reference Citation Analysis]
14 Nupearachchi C, Mahatantila K, Vithanage M. Application of graphene for decontamination of water; Implications for sorptive removal. Groundwater for Sustainable Development 2017;5:206-15. [DOI: 10.1016/j.gsd.2017.06.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 13] [Article Influence: 8.4] [Reference Citation Analysis]
15 Chand R, Tuteja SK, Neethirajan S. Graphene‐Based Biosensors in Agro‐Defense: Food Safety and Animal Health Diagnosis. In: Celasco E, Chaika AN, Stauber T, Zhang M, Ozkan C, Ozkan C, Ozkan U, Palys B, Harun SW, editors. Handbook of Graphene. Wiley; 2019. pp. 29-57. [DOI: 10.1002/9781119468455.ch89] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Cai J, Sun Q, Meng X; Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, the United States. . AIMS Materials Science 2018;5:957-99. [DOI: 10.3934/matersci.2018.5.957] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jesu Amalraj AJ, Umesh NM, Wang S. Synthesis of core-shell-like structure SnS2-SnO2 integrated with graphene nanosheets for the electrochemical detection of furazolidone drug in furoxone tablet. Journal of Molecular Liquids 2020;313:113554. [DOI: 10.1016/j.molliq.2020.113554] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
18 Fan Z, Wang J, Wang Z, Li Z, Qiu Y, Wang H, Xu Y, Niu L, Gong P, Yang S. Casein Phosphopeptide-Biofunctionalized Graphene Biocomposite for Hydroxyapatite Biomimetic Mineralization. J Phys Chem C 2013;117:10375-82. [DOI: 10.1021/jp312163m] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
19 Karabörk M, Sami HZ, Tümer M. A new efficient adsorbent in the preconcentration studies of the Cr(III) and Fe(III) ions. Appl Organometal Chem 2017;32:e4158. [DOI: 10.1002/aoc.4158] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
20 Wei D, Kivioja J. Graphene for energy solutions and its industrialization. Nanoscale 2013;5:10108. [DOI: 10.1039/c3nr03312k] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 7.6] [Reference Citation Analysis]
21 Fei X, Liu Z, Li Y, Yang G, Su C, Zhong H, Zhuang Z, Guo Z. One-pot green synthesis of flower-liked Au NP@GQDs nanocomposites for surface-enhanced Raman scattering. Journal of Alloys and Compounds 2017;725:1084-90. [DOI: 10.1016/j.jallcom.2017.05.072] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
22 Chauhan N, Maekawa T, Kumar DNS. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J Mater Res 2017;32:2860-82. [DOI: 10.1557/jmr.2017.91] [Cited by in Crossref: 55] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
23 Yao J, Gou X. An investigation of preparation, properties, characterization and the mechanism of zinc blende CdTe/CdS core/shell quantum dots for sensitive and selective detection of trace mercury. J Mater Chem C 2016;4:9856-63. [DOI: 10.1039/c6tc02878k] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
24 Andryushina NS, Stroyuk OL, Yanchuk IB, Yefanov AV. A dynamic light scattering study of photochemically reduced colloidal graphene oxide. Colloid Polym Sci 2014;292:539-46. [DOI: 10.1007/s00396-013-3134-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
25 Chen Z, Mai B, Tan H, Chen X. Nucleic acid based nanocomposites and their applications in biomedicine. Composites Communications 2018;10:194-204. [DOI: 10.1016/j.coco.2018.10.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
26 Lawal AT. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015;131:424-43. [DOI: 10.1016/j.talanta.2014.07.019] [Cited by in Crossref: 132] [Cited by in F6Publishing: 93] [Article Influence: 18.9] [Reference Citation Analysis]
27 Ayazi Z. Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst 2017;142:721-39. [DOI: 10.1039/c6an02744j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 1] [Article Influence: 5.2] [Reference Citation Analysis]
28 Dabiri M, Lehi NF, Movahed SK. Fe3O4@RGO@Au@C Composite with Magnetic Core and Au Enwrapped in Double-Shelled Carbon: An Excellent Catalyst in the Reduction of Nitroarenes and Suzuki–Miyaura Cross-Coupling. Catal Lett 2016;146:1674-86. [DOI: 10.1007/s10562-016-1792-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
29 Cirillo G, Peitzsch C, Vittorio O, Curcio M, Farfalla A, Voli F, Dubrovska A, Iemma F, Kavallaris M, Hampel S. When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2019;11:2205-31. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
30 Yang M, Yao J, Duan Y. Graphene and its derivatives for cell biotechnology. Analyst 2013;138:72-86. [DOI: 10.1039/c2an35744e] [Cited by in Crossref: 38] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
31 Wang Z, Xia J, Song D, Zhang F, Yang M, Gui R, Xia L, Bi S, Xia Y. Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing. Biosens Bioelectron 2016;77:157-63. [PMID: 26406456 DOI: 10.1016/j.bios.2015.09.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
32 Baghayeri M. Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sensors and Actuators B: Chemical 2017;240:255-63. [DOI: 10.1016/j.snb.2016.08.161] [Cited by in Crossref: 43] [Cited by in F6Publishing: 25] [Article Influence: 8.6] [Reference Citation Analysis]
33 Barinov NA, Prokhorov VV, Dubrovin EV, Klinov DV. AFM visualization at a single-molecule level of denaturated states of proteins on graphite. Colloids and Surfaces B: Biointerfaces 2016;146:777-84. [DOI: 10.1016/j.colsurfb.2016.07.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
34 Yan J, Liu S, Zhang Z, He G, Zhou P, Liang H, Tian L, Zhou X, Jiang H. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. Colloids and Surfaces B: Biointerfaces 2013;111:392-7. [DOI: 10.1016/j.colsurfb.2013.06.030] [Cited by in Crossref: 145] [Cited by in F6Publishing: 107] [Article Influence: 16.1] [Reference Citation Analysis]
35 Valentini F, Carbone M, Palleschi G. Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO–IL) for assembly of miniaturized electrochemical devices. Anal Bioanal Chem 2013;405:3449-74. [DOI: 10.1007/s00216-012-6615-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
36 Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E, Labib M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2020;150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 11.7] [Reference Citation Analysis]
37 Dabiri M, Shariatipour M, Kazemi Movahed S, Bashiribod S. Water-dispersible and magnetically separable gold nanoparticles supported on a magnetite/s-graphene nanocomposite and their catalytic application in the Ullmann coupling of aryl iodides in aqueous media. RSC Adv 2014;4:39428-34. [DOI: 10.1039/c4ra04479g] [Cited by in Crossref: 21] [Article Influence: 2.6] [Reference Citation Analysis]
38 Liu X, Yan L, Yin W, Zhou L, Tian G, Shi J, Yang Z, Xiao D, Gu Z, Zhao Y. A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J Mater Chem A 2014;2:12296. [DOI: 10.1039/c4ta00753k] [Cited by in Crossref: 87] [Cited by in F6Publishing: 5] [Article Influence: 10.9] [Reference Citation Analysis]
39 Thomas HR, Day SP, Woodruff WE, Vallés C, Young RJ, Kinloch IA, Morley GW, Hanna JV, Wilson NR, Rourke JP. Deoxygenation of Graphene Oxide: Reduction or Cleaning? Chem Mater 2013;25:3580-8. [DOI: 10.1021/cm401922e] [Cited by in Crossref: 156] [Cited by in F6Publishing: 106] [Article Influence: 17.3] [Reference Citation Analysis]
40 Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends in Analytical Chemistry 2014;54:83-102. [DOI: 10.1016/j.trac.2013.11.001] [Cited by in Crossref: 223] [Cited by in F6Publishing: 157] [Article Influence: 27.9] [Reference Citation Analysis]
41 Tamburri E, Carcione R, Politi S, Angjellari M, Lazzarini L, Vanzetti LE, Macis S, Pepponi G, Terranova ML. Shungite Carbon as Unexpected Natural Source of Few-Layer Graphene Platelets in a Low Oxidation State. Inorg Chem 2018;57:8487-98. [PMID: 29969022 DOI: 10.1021/acs.inorgchem.8b01164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
42 Pourjavadi A, Nazari M, Kabiri B, Hosseini SH, Bennett C. Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Adv 2016;6:10430-7. [DOI: 10.1039/c5ra21629j] [Cited by in Crossref: 53] [Article Influence: 8.8] [Reference Citation Analysis]
43 Vera-sánchez M, Aznar-cervantes S, Jover E, García-bernal D, Oñate-sánchez RE, Hernández-romero D, Moraleda JM, Collado-gonzález M, Rodríguez-lozano FJ, Cenis JL. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells. Stem Cells and Development 2016;25:1742-54. [DOI: 10.1089/scd.2016.0028] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
44 Reddy KR, Gomes VG, Hassan M. Carbon functionalized TiO 2 nanofibers for high efficiency photocatalysis. Mater Res Express 2014;1:015012. [DOI: 10.1088/2053-1591/1/1/015012] [Cited by in Crossref: 301] [Cited by in F6Publishing: 168] [Article Influence: 37.6] [Reference Citation Analysis]
45 Vacchi IA, Spinato C, Raya J, Bianco A, Ménard-Moyon C. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale 2016;8:13714-21. [PMID: 27411370 DOI: 10.1039/c6nr03846h] [Cited by in Crossref: 81] [Cited by in F6Publishing: 11] [Article Influence: 20.3] [Reference Citation Analysis]
46 Wang S, Sun H, Ang H, Tadé M. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal 2013;226:336-47. [DOI: 10.1016/j.cej.2013.04.070] [Cited by in Crossref: 426] [Cited by in F6Publishing: 282] [Article Influence: 47.3] [Reference Citation Analysis]
47 Gado MA. Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Separation Science and Technology 2018;53:2016-33. [DOI: 10.1080/01496395.2018.1443130] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 6.8] [Reference Citation Analysis]
48 Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 2015;9:4636-48. [PMID: 25858670 DOI: 10.1021/acsnano.5b01179] [Cited by in Crossref: 497] [Cited by in F6Publishing: 392] [Article Influence: 71.0] [Reference Citation Analysis]
49 Yao J, Li Y, Xie M, Yang Q, Liu T. The electrochemical behaviors and kinetics of AuNPs/N, S-GQDs composite electrode: A novel label-free amplified BPA aptasensor with extreme sensitivity and selectivity. Journal of Molecular Liquids 2020;320:114384. [DOI: 10.1016/j.molliq.2020.114384] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
50 Jiang W, Mo F, Lin Y, Wang X, Xu L, Fu F. Tumor targeting dual stimuli responsive controllable release nanoplatform based on DNA-conjugated reduced graphene oxide for chemo-photothermal synergetic cancer therapy. J Mater Chem B 2018;6:4360-7. [PMID: 32254511 DOI: 10.1039/c8tb00670a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
51 Kumar A, Khandelwal M. Amino acid mediated functionalization and reduction of graphene oxide – synthesis and the formation mechanism of nitrogen-doped graphene. New J Chem 2014;38:3457-67. [DOI: 10.1039/c4nj00308j] [Cited by in Crossref: 43] [Article Influence: 5.4] [Reference Citation Analysis]
52 Calmeiro JMD, Tomé JPC, Lourenço LMO. Supramolecular graphene–phthalocyanine assemblies for technological breakthroughs. J Mater Chem C 2020;8:8344-61. [DOI: 10.1039/d0tc00557f] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Li Y, Church JS. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis 2014;22:29-48. [DOI: 10.1016/j.jfda.2014.01.003] [Cited by in Crossref: 126] [Cited by in F6Publishing: 85] [Article Influence: 15.8] [Reference Citation Analysis]
54 Li B, Yu Q, Duan Y. Fluorescent labels in biosensors for pathogen detection. Critical Reviews in Biotechnology 2013;35:82-93. [DOI: 10.3109/07388551.2013.804487] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
55 Seok Kim Y, Ahmad Raston NH, Bock Gu M. Aptamer-based nanobiosensors. Biosensors and Bioelectronics 2016;76:2-19. [DOI: 10.1016/j.bios.2015.06.040] [Cited by in Crossref: 200] [Cited by in F6Publishing: 170] [Article Influence: 33.3] [Reference Citation Analysis]
56 Nalvuran H, Elçin AE, Elçin YM. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. International Journal of Biological Macromolecules 2018;114:77-84. [DOI: 10.1016/j.ijbiomac.2018.03.072] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
57 Yao J, Xie Z, Zeng X, Wang L, Yue T. Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: Synthesis, characterization, mechanism and DFT calculations. Sensors and Actuators B: Chemical 2022;354:130760. [DOI: 10.1016/j.snb.2021.130760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Kumar Y. v. V. A, R. M. R, J. A, Mudili V, Poda S. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Adv 2018;8:10465-73. [DOI: 10.1039/c8ra00317c] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
59 He Y, Cheng N, Zhao J. First-principle study on the conductance of benzene-based molecules with various bonding characteristics. Computational and Theoretical Chemistry 2019;1154:1-10. [DOI: 10.1016/j.comptc.2019.03.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
60 Aznar-cervantes S, Martínez JG, Bernabeu-esclapez A, Lozano-pérez AA, Meseguer-olmo L, Otero TF, Cenis JL. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry 2016;108:36-45. [DOI: 10.1016/j.bioelechem.2015.12.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
61 Yao J, Liu C, Yang M. An Ultrasensitive and Highly Selective Electrochemical Aptasensor for Environmental Endocrine Disrupter Bisphenol A Determination Using Gold Nanoparticles/Nitrogen, Sulfur, and Phosphorus Co-Doped Carbon Dots as Signal Enhancer and Its Electrochemical Kinetic Research. J Electrochem Soc 2019;166:B1161-70. [DOI: 10.1149/2.1481912jes] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
62 D. N, A. R, C. V, N. P. N-doped Graphene/ZnFe2O4: A novel nanocomposite for intrinsic peroxidase based sensing of H2O2. Materials Research Bulletin 2017;95:1-8. [DOI: 10.1016/j.materresbull.2017.06.033] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
63 Chen Y, Li M, Payamyar P, Zheng Z, Sakamoto J, Schlüter AD. Room Temperature Synthesis of a Covalent Monolayer Sheet at Air/Water Interface Using a Shape-Persistent Photoreactive Amphiphilic Monomer. ACS Macro Lett 2014;3:153-8. [PMID: 35590496 DOI: 10.1021/mz400597k] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
64 Di S, Qian Y, Wang L, Li Z. Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: a review. J Mater Sci 2022;57:3085-113. [DOI: 10.1007/s10853-021-06787-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Sharma PS, D’souza F, Kutner W. Graphene and Graphene Oxide Materials for Chemo- and Biosensing of Chemical and Biochemical Hazards. In: Marcaccio M, Paolucci F, editors. Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes. Berlin: Springer Berlin Heidelberg; 2014. pp. 237-65. [DOI: 10.1007/128_2013_448] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
66 Gao P, Wang G, Zhou L. Luminescent Sulfur Quantum Dots: Synthesis, Properties and Potential Applications. ChemPhotoChem 2020;4:5235-44. [DOI: 10.1002/cptc.202000158] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
67 Rodríguez-lozano FJ, García-bernal D, Aznar-cervantes S, Ros-roca MA, Algueró MC, Atucha NM, Lozano-garcía AA, Moraleda JM, Cenis JL. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci: Mater Med 2014;25:2731-41. [DOI: 10.1007/s10856-014-5293-2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 6.4] [Reference Citation Analysis]
68 Granadeiro CM, Cruz SMA, Gonçalves G, Marques PAAP, Costa PMFJ, Ferreira RAS, Carlos LD, Nogueira HIS. Photoluminescent bimetallic-3-hydroxypicolinate/graphene oxide nanocomposite. RSC Adv 2012;2:9443. [DOI: 10.1039/c2ra21388e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
69 Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Materials Science and Engineering: C 2017;74:568-81. [DOI: 10.1016/j.msec.2016.12.125] [Cited by in Crossref: 121] [Cited by in F6Publishing: 87] [Article Influence: 24.2] [Reference Citation Analysis]
70 Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014;114:6130-78. [DOI: 10.1021/cr200359p] [Cited by in Crossref: 503] [Cited by in F6Publishing: 394] [Article Influence: 62.9] [Reference Citation Analysis]
71 Chowdhury MA, Shuvho MBA, Hossain MI, Ali MO, Kchaou M, Rahman A, Yeasmin N, Khan AS, Rahman MA, Mofijur M. Multiphysical analysis of nanoparticles and their effects on plants. Biotechnol Appl Biochem 2020. [PMID: 33016525 DOI: 10.1002/bab.2049] [Reference Citation Analysis]
72 Mondal T, Bhowmick AK, Krishnamoorti R. Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 2012;22:22481. [DOI: 10.1039/c2jm33398h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
73 Cacaci M, Martini C, Guarino C, Torelli R, Bugli F, Sanguinetti M. Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. Adv Exp Med Biol 2020;1282:21-35. [PMID: 31468360 DOI: 10.1007/5584_2019_434] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
74 Haniff Wahid M, Stroeher UH, Eroglu E, Chen X, Vimalanathan K, Raston CL, Boulos RA. Aqueous based synthesis of antimicrobial-decorated graphene. Journal of Colloid and Interface Science 2015;443:88-96. [DOI: 10.1016/j.jcis.2014.11.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
75 Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022;12:939365. [DOI: 10.3389/fonc.2022.939365] [Reference Citation Analysis]
76 Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Appl Mater Interfaces 2013;5:3867-74. [DOI: 10.1021/am4005495] [Cited by in Crossref: 314] [Cited by in F6Publishing: 271] [Article Influence: 34.9] [Reference Citation Analysis]
77 Shanmuganathan R, Sathishkumar G, Brindhadevi K, Pugazhendhi A. Fabrication of naringenin functionalized-Ag/RGO nanocomposites for potential bactericidal effects. Journal of Materials Research and Technology 2020;9:7013-9. [DOI: 10.1016/j.jmrt.2020.03.118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
78 Wei J, Vo T, Inam F. Epoxy/graphene nanocomposites – processing and properties: a review. RSC Adv 2015;5:73510-24. [DOI: 10.1039/c5ra13897c] [Cited by in Crossref: 123] [Cited by in F6Publishing: 1] [Article Influence: 17.6] [Reference Citation Analysis]
79 Shi F, Li J, Sun J, Huang H, Su X, Wang Z. Sodium hexametaphosphate modulated fluorescence responsive biosensor based on self-assembly / disassembly mode of reduced-graphene quantum dots / chitosan system for alkaline phosphatase. Talanta 2020;207:120341. [DOI: 10.1016/j.talanta.2019.120341] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
80 Vulcu A, Biris AR, Borodi G, Berghian-grosan C. Interference of ascorbic and uric acids on dopamine behavior at graphene composite surface: An electrochemical, spectroscopic and theoretical approach. Electrochimica Acta 2018;282:822-34. [DOI: 10.1016/j.electacta.2018.06.122] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
81 Chen X, Chen B. Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. Environ Sci Technol 2016;50:8568-77. [PMID: 27447025 DOI: 10.1021/acs.est.6b01020] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
82 Lin Q, Huang X, Tang J, Han Y, Chen H. Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-2144-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
83 Aznar-cervantes S, Pagán A, Martínez JG, Bernabeu-esclapez A, Otero TF, Meseguer-olmo L, Paredes JI, Cenis JL. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Materials Science and Engineering: C 2017;79:315-25. [DOI: 10.1016/j.msec.2017.05.055] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 9.6] [Reference Citation Analysis]