BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qian Y, Cheng Y, Ouyang Y, Yuan W, Fan C. Multilayered spraying and gradient dotting of nanodiamond–polycaprolactone guidance channels for restoration of immune homeostasis. NPG Asia Mater 2019;11. [DOI: 10.1038/s41427-019-0136-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Yan Z, Chen W, Qian Y, Fan C. Nerve Regeneration. Biofabrication for Orthopedics 2022. [DOI: 10.1002/9783527831371.ch21] [Reference Citation Analysis]
2 Li X, Jiang H, He N, Yuan W, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems 2022;2022:1-20. [DOI: 10.34133/2022/9892526] [Reference Citation Analysis]
3 Wang S, Yao Z, Zhang X, Li J, Huang C, Ouyang Y, Qian Y, Fan C. Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. Adv Sci (Weinh) 2022;:e2202542. [PMID: 36000796 DOI: 10.1002/advs.202202542] [Reference Citation Analysis]
4 Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural Polymer‐Derived Bioscaffolds for Peripheral Nerve Regeneration. Adv Funct Materials. [DOI: 10.1002/adfm.202203829] [Reference Citation Analysis]
5 Jin Y, Zhang W, Zhang Y, Yang Y, Fang Z, Song J, Qian Y, Yuan WE. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022;135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sadeghi A, Fatemi MJ, Zandi M, Bagheri T, Ghadimi T, Tamimi M, Pezeshki-Modaress M. Multilayered 3-D nanofibrous scaffold with chondroitin sulfate sustained release as dermal substitute. Int J Biol Macromol 2022:S0141-8130(22)00531-1. [PMID: 35304196 DOI: 10.1016/j.ijbiomac.2022.03.061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, Fan C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr Polym 2022;277:118865. [PMID: 34893270 DOI: 10.1016/j.carbpol.2021.118865] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan W, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Tang M, Zhang X, Yang A, Liu Y, Xie K, Zhou Y, Wang C, Liu J, Shi P, Lin X. Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small 2021;:e2105388. [PMID: 34894073 DOI: 10.1002/smll.202105388] [Reference Citation Analysis]
10 Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today 2021;51:165-87. [DOI: 10.1016/j.mattod.2021.09.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 32.0] [Reference Citation Analysis]
11 Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y. Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00116-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 19.0] [Reference Citation Analysis]
12 Wang S, Zhu C, Zhang B, Hu J, Xu J, Xue C, Bao S, Gu X, Ding F, Yang Y, Gu X, Gu Y. BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials 2022;280:121251. [PMID: 34810037 DOI: 10.1016/j.biomaterials.2021.121251] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
13 Barzegar Amiri Olia M, Donnelly PS, Hollenberg LCL, Mulvaney P, Simpson DA. Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. ACS Appl Nano Mater 2021;4:9985-10005. [DOI: 10.1021/acsanm.1c02698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
14 Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021;7:3503-29. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
15 Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021;16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
16 Qian Y, Xu Y, Yan Z, Jin Y, Chen X, Yuan W, Fan C. Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 2021;83:105779. [DOI: 10.1016/j.nanoen.2021.105779] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
17 Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Appl Mater Interfaces 2021;13:16106-17. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 22.0] [Reference Citation Analysis]
18 Liang X, Li N, Zhang R, Yin P, Zhang C, Yang N, Liang K, Kong B. Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-020-00278-5] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 49.0] [Reference Citation Analysis]
19 Guarino V, Cruz-maya I, Reineck P, Abe H, Ohshima T, Fox K, Greentree AD, Gibson BC, Ambrosio L. Fluorescent Nanodiamonds Embedded in Poly-ε-Caprolactone Fibers as Biomedical Scaffolds. ACS Appl Nano Mater 2020;3:10814-22. [DOI: 10.1021/acsanm.0c02103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Dong X, Cheng Q, Long Y, Xu C, Fang H, Chen Y, Dai H. A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polymer Degradation and Stability 2020;181:109322. [DOI: 10.1016/j.polymdegradstab.2020.109322] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
21 Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano 2020;14:12579-95. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 23.5] [Reference Citation Analysis]
22 Mani N, Rifai A, Houshyar S, Booth MA, Fox K. Diamond in medical devices and sensors: An overview of diamond surfaces. Med Devices Sens 2020;3. [DOI: 10.1002/mds3.10127] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]