BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Tamijani AA, Taylor ME, Zhi B, Haynes CL, Mason SE, Hamers RJ. Molecular Surface Functionalization of Carbon Materials via Radical-Induced Grafting of Terminal Alkenes. J Am Chem Soc 2019;141:8277-88. [PMID: 31038938 DOI: 10.1021/jacs.9b02369] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 He M. Surface functionalization of carbon materials. Reference Module in Materials Science and Materials Engineering 2023. [DOI: 10.1016/b978-0-12-822425-0.00125-1] [Reference Citation Analysis]
2 Byron C, Silva-quinones D, Sarkar S, Brown SC, Bai S, Quinn CM, Grzenda Z, Chinn MS, Teplyakov AV. Attachment Chemistry of 4-Fluorophenylboronic Acid on TiO2 and Al2O3 Nanoparticles. Chem Mater 2022. [DOI: 10.1021/acs.chemmater.2c02789] [Reference Citation Analysis]
3 Ainsworth J, Cook TC, Stack TDP. Fast and Versatile Functionalization of Glassy Carbon. Langmuir 2022. [DOI: 10.1021/acs.langmuir.2c01964] [Reference Citation Analysis]
4 Tao Y, Dai Y, Zhang Z, Geng M, Liu F, Na H, Zhu J. Formation of hydroxyl-rich carbon layer coated silica microspheres and its application to enhance hydrolysis of cellulose to sugar. Carbon 2022. [DOI: 10.1016/j.carbon.2022.10.087] [Reference Citation Analysis]
5 Song A, Kim JH, Yong H, Rho Y, Song D, Cho E, Kim MJ, Chung K, Kim H, Lee S. ZnO–Plasma Polymer Fluorocarbon Thin Films for Stable Battery Anodes and High-Output Triboelectric Nanogenerators. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02892] [Reference Citation Analysis]
6 Ramírez‐chan DE, Palacios‐ramírez JI, Fragoso‐soriano R, González FJ. Spontaneous Decarboxylation of Ferrocenecarboxylate using 1,4‐Benzoquinone as Oxidant: Application to the Chemical Grafting of Glassy Carbon Surfaces. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202453] [Reference Citation Analysis]
7 Jones ZR, Niemuth NJ, Zhang Y, Protter CR, Kinsley PC, Klaper RD, Hamers RJ. Use of Magnetic Modulation of Nitrogen-Vacancy Center Fluorescence in Nanodiamonds for Quantitative Analysis of Nanoparticles in Organisms. ACS Meas Au. [DOI: 10.1021/acsmeasuresciau.2c00006] [Reference Citation Analysis]
8 Yang X, Li X, Wang B, Ai L, Li G, Yang B, Lu S. Advances, opportunities, and challenge for full-color emissive carbon dots. Chinese Chemical Letters 2022;33:613-25. [DOI: 10.1016/j.cclet.2021.08.077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. Mater Horiz 2022;9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
10 Cai R, Xiao L, Liu M, Du F, Wang Z. Recent Advances in Functional Carbon Quantum Dots for Antitumour. Int J Nanomedicine 2021;16:7195-229. [PMID: 34720582 DOI: 10.2147/IJN.S334012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 Barzegar Amiri Olia M, Donnelly PS, Hollenberg LCL, Mulvaney P, Simpson DA. Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. ACS Appl Nano Mater 2021;4:9985-10005. [DOI: 10.1021/acsanm.1c02698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Kausar A. Nanodiamond integrating poly(methyl methacrylate) nanocomposites intending for technological innovations. Materials Research Innovations 2021;25:310-9. [DOI: 10.1080/14328917.2020.1812928] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Bachman BF, Jones ZR, Jaffe GR, Salman J, Wambold R, Yu Z, Choy JT, Kolkowitz SJ, Eriksson MA, Kats MA, Hamers RJ. High-Density Covalent Grafting of Spin-Active Molecular Moieties to Diamond Surfaces. Langmuir 2021;37:9222-31. [PMID: 34279965 DOI: 10.1021/acs.langmuir.1c01425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhang Y, Dahal U, Feng ZV, Rosenzweig Z, Cui Q, Hamers RJ. Influence of Surface Ligand Molecular Structure on Phospholipid Membrane Disruption by Cationic Nanoparticles. Langmuir 2021;37:7600-10. [PMID: 34115507 DOI: 10.1021/acs.langmuir.1c01146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Cui AY, Cui Q. Modulation of Nanoparticle Diffusion by Surface Ligand Length and Charge: Analysis with Molecular Dynamics Simulations. J Phys Chem B 2021;125:4555-65. [PMID: 33881853 DOI: 10.1021/acs.jpcb.1c01189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Catania F, Marras E, Giorcelli M, Jagdale P, Lavagna L, Tagliaferro A, Bartoli M. A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. Applied Sciences 2021;11:614. [DOI: 10.3390/app11020614] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
17 Liang D, Dahal U, Wu M, Murphy CJ, Cui Q. Ligand Length and Surface Curvature Modulate Nanoparticle Surface Heterogeneity and Electrostatics. J Phys Chem C 2020;124:24513-25. [DOI: 10.1021/acs.jpcc.0c08387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Oh S, Bisbey RP, Gul S, Yano J, Fisher GL, Surendranath Y. N-Heterocyclic Linkages Are Produced from Condensation of Amidines onto Graphitic Carbon. Chem Mater 2020;32:8512-8521. [DOI: 10.1021/acs.chemmater.0c02664] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen X, Wang X, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes and Carbon Nanostructures 2020;28:1048-58. [DOI: 10.1080/1536383x.2020.1794851] [Cited by in Crossref: 161] [Cited by in F6Publishing: 125] [Article Influence: 53.7] [Reference Citation Analysis]
20 Zhang Y, Hudson-Smith NV, Frand SD, Cahill MS, Davis LS, Feng ZV, Haynes CL, Hamers RJ. Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions. J Am Chem Soc 2020;142:10814-23. [PMID: 32402194 DOI: 10.1021/jacs.0c02737] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
21 Xu M, Richard F, Corbet M, Marion P, Clacens J. Pickering emulsions assisted synthesis of fatty acetal over phenyl sulfonic groups grafted on activated charcoal. Applied Catalysis A: General 2020;597:117543. [DOI: 10.1016/j.apcata.2020.117543] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hedlund Orbeck JK, Hamers RJ. Surface properties and interactions of transition metal oxide nanoparticles: A perspective on sustainability. Journal of Vacuum Science & Technology A 2020;38:031001. [DOI: 10.1116/1.5141853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Ma P, Sun X, Pan W, Yu G, Wang J. Green and Orange Emissive Carbon Dots with High Quantum Yields Dispersed in Matrices for Phosphor-Based White LEDs. ACS Sustainable Chem Eng 2020;8:3151-61. [DOI: 10.1021/acssuschemeng.9b06008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]