BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Hudson-Smith NV, Frand SD, Cahill MS, Davis LS, Feng ZV, Haynes CL, Hamers RJ. Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions. J Am Chem Soc 2020;142:10814-23. [PMID: 32402194 DOI: 10.1021/jacs.0c02737] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Xu D, Ju X, Zhu M, Ou J, Lu G, Wan C, Li K, Jiang W, Jia X, Han Y, Tian Y, Niu Z. Surface decoration with leucine tetrapeptide: An antibacterial strategy against Gram-negative bacteria. J Colloid Interface Sci 2023;641:126-34. [PMID: 36931211 DOI: 10.1016/j.jcis.2023.03.038] [Reference Citation Analysis]
2 Kinsley PC, Green CM, Borgatta J, Kruszynski Earl CE, Laudadio ED, Hamers RJ. Nanometer-Thick Carbon Coatings with Covalent Chemical Functionalization of Metal Oxide Nanoparticles for Environmental and Biological Applications. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c05288] [Reference Citation Analysis]
3 Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional Bioinspired Bredigite-Modified Adhesive for Bone Fracture Healing. ACS Appl Mater Interfaces 2023;15:6499-513. [PMID: 36700731 DOI: 10.1021/acsami.2c20038] [Reference Citation Analysis]
4 Okoro G, Husain S, Saukani M, Mutalik C, Yougbaré S, Hsiao Y, Kuo T. Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00752] [Reference Citation Analysis]
5 Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chemical Engineering Research and Design 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Reference Citation Analysis]
6 Ou L, Chen H, Yuan B, Yang K. Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driven Interaction Mechanism. ACS Nano 2022;16:18090-100. [PMID: 36278503 DOI: 10.1021/acsnano.2c04774] [Reference Citation Analysis]
7 Li Y, Qu S, Xue Y, Zhang L, Shang L. Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano—bio interactions. Nano Res . [DOI: 10.1007/s12274-022-4837-x] [Reference Citation Analysis]
8 Xue Y, Zhao Z, Zhao Y, Wang C, Shen S, Qiu Z, Cui R, Zhou S, Fang L, Chen Z, Zhu H, Zhu B. Influence of cationic groups on the antibacterial behavior of cationic nano-sized hyperbranched polymers to enhance bacteria-infected wound healing. Nanoscale 2022. [PMID: 36004750 DOI: 10.1039/d2nr02149h] [Reference Citation Analysis]
9 Zhao X, Tang H, Jiang X. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano 2022. [PMID: 35776694 DOI: 10.1021/acsnano.2c02269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Xue Y, Qiu Z, Zhao Z, Wang C, Cui R, Shen S, Zhao Y, Zhou S, Fang L, Chen Z, Zhu H, Zhu B. Secondary Ammonium-Based Hyperbranched Poly(amidoamine) with Excellent Membrane-Active Property for Multidrug-Resistant Bacterial Infection. ACS Appl Bio Mater 2022. [PMID: 35765122 DOI: 10.1021/acsabm.2c00356] [Reference Citation Analysis]
11 Wang C, Xue Y, Tian H, Zhao Z, Shen S, Fang L, Cui R, Han J, Zhu B. Tri‐functional unit groups contained polyurethane composites with excellent antibacterial property and biocompatibility. Journal of Polymer Science. [DOI: 10.1002/pol.20210951] [Reference Citation Analysis]
12 Jones ZR, Niemuth NJ, Zhang Y, Protter CR, Kinsley PC, Klaper RD, Hamers RJ. Use of Magnetic Modulation of Nitrogen-Vacancy Center Fluorescence in Nanodiamonds for Quantitative Analysis of Nanoparticles in Organisms. ACS Meas Au. [DOI: 10.1021/acsmeasuresciau.2c00006] [Reference Citation Analysis]
13 Anali Bazán Henostroza M, Diniz Tavares G, Nishitani Yukuyama M, De Souza A, José Barbosa E, Carlos Avino V, Dos Santos Neto E, Rebello Lourenço F, Löbenberg R, Araci Bou-Chacra N. Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022;:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Graham AJ, Gibbs SL, Saez Cabezas CA, Wang Y, Green AM, Milliron DJ, Keitz BK. In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals**. ChemElectroChem 2022;9. [DOI: 10.1002/celc.202101423] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Dong R, Chen Z. Non-metallic copolymer material-based universal bio-abiotic hybrid platform for boosting the efficient electronic collection of microbial fuel cells. J Mater Chem A. [DOI: 10.1039/d1ta10988j] [Reference Citation Analysis]
16 Xiao K, Liang J, Wang X, Hou T, Ren X, Yin P, Ma Z, Zeng C, Gao X, Yu T, Si T, Wang B, Zhong C, Jiang Z, Lee C, Yu JC, Wong PK. Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy Environ Sci . [DOI: 10.1039/d1ee03094a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
17 Cestellos-Blanco S, Kim JM, Watanabe NG, Chan RR, Yang P. Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. iScience 2021;24:102952. [PMID: 34458701 DOI: 10.1016/j.isci.2021.102952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Gong D, Zhang A, Luo H, Shi Y, Zhang Y, Tan L. Polyhexamethylene biguanide hydrochloride anchored polymeric elastic fibers with robust antibacterial performance. J Appl Polym Sci 2022;139:51633. [DOI: 10.1002/app.51633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Qiu P, Yuan P, Deng Z, Su Z, Bai Y, He J. One-pot facile synthesis of enzyme-encapsulated Zn/Co-infinite coordination polymer nanospheres as a biocatalytic cascade platform for colorimetric monitoring of bacteria viability. Mikrochim Acta 2021;188:322. [PMID: 34487260 DOI: 10.1007/s00604-021-04981-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Liu K, Zhang F, Wei Y, Hu Q, Luo Q, Chen C, Wang J, Yang L, Luo R, Wang Y. Dressing Blood-Contacting Materials by a Stable Hydrogel Coating with Embedded Antimicrobial Peptides for Robust Antibacterial and Antithrombus Properties. ACS Appl Mater Interfaces 2021;13:38947-58. [PMID: 34433245 DOI: 10.1021/acsami.1c05167] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
21 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
22 Zhang H, Mou J, Ding J, Qin W. Magneto-controlled potentiometric assay for E. coli based on cleavage of peptide by outer-membrane protease T. Electrochimica Acta 2021;384:138408. [DOI: 10.1016/j.electacta.2021.138408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhang Y, Dahal U, Feng ZV, Rosenzweig Z, Cui Q, Hamers RJ. Influence of Surface Ligand Molecular Structure on Phospholipid Membrane Disruption by Cationic Nanoparticles. Langmuir 2021;37:7600-10. [PMID: 34115507 DOI: 10.1021/acs.langmuir.1c01146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Morillas-Becerril L, Franco-Ulloa S, Fortunati I, Marotta R, Sun X, Zanoni G, De Vivo M, Mancin F. Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers. Commun Chem 2021;4:93. [PMID: 36697571 DOI: 10.1038/s42004-021-00526-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zheng D, Yang K, Nie Z. Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. VIEW 2021;2:20200067. [DOI: 10.1002/viw.20200067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Chew AK, Dallin BC, Van Lehn RC. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles. ACS Nano 2021;15:4534-45. [PMID: 33621066 DOI: 10.1021/acsnano.0c08623] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
27 Calatayud DG, Jardiel T, Bernardo MS, Mirabello V, Ge H, Arrowsmith RL, Cortezon-Tamarit F, Alcaraz L, Isasi J, Arévalo P, Caballero AC, Pascu SI, Peiteado M. Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS Appl Bio Mater 2021;4:4105-18. [PMID: 34056563 DOI: 10.1021/acsabm.0c01417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 Yehuda N, Turkulets Y, Shalish I, Kushmaro A, Malis Arad S. Red Microalgal Sulfated Polysaccharide-Cu2O Complexes: Characterization and Bioactivity. ACS Appl Mater Interfaces 2021;13:7070-9. [PMID: 33544596 DOI: 10.1021/acsami.0c17919] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Razza N, Lavino AD, Fadda G, Lairez D, Impagnatiello A, Marchisio D, Sangermano M, Rizza G. Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruption. Nanoscale Adv 2021;3:4979-4989. [DOI: 10.1039/d1na00360g] [Reference Citation Analysis]
30 Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale 2021;13:2266-85. [DOI: 10.1039/d0nr08478f] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
31 Li X, Shao Y, Lv S, Tian J, Zheng D, Song J, Song F. Au@mSiO2 core-shell nanoparticles loaded with fluorescent dyes: synthesis and application for imaging performance. Dalton Trans 2021;50:5624-31. [PMID: 33908961 DOI: 10.1039/d1dt00253h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Asgarirad H, Ebrahimnejad P, Mahjoub MA, Jalalian M, Morad H, Ataee R, Hosseini SS, Farmoudeh A. A promising technology for wound healing; in-vitro and in-vivo evaluation of chitosan nano-biocomposite films containing gentamicin. J Microencapsul 2021;38:100-7. [PMID: 33245001 DOI: 10.1080/02652048.2020.1851789] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
33 Graham AJ, Gibbs SL, Cabezas CAS, Wang Y, Green AM, Milliron DJ, Keitz BK. In Situ Optical Quantification of Extracellular Electron Transfer using Plasmonic Metal Oxide Nanocrystals.. [DOI: 10.1101/2020.10.13.336008] [Reference Citation Analysis]
34 Daly CA, Hernandez R. Optimizing bags of artificial neural networks for the prediction of viability from sparse data. J Chem Phys 2020;153:054112. [DOI: 10.1063/5.0017229] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]