BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang L, Cole KD, Gaigalas AK, Zhang YZ. Fluorescent nanometer microspheres as a reporter for sensitive detection of simulants of biological threats using multiplexed suspension arrays. Bioconjug Chem 2005;16:194-9. [PMID: 15656591 DOI: 10.1021/bc0498020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Climent E, Martí A, Royo S, Martínez-máñez R, Marcos M, Sancenón F, Soto J, Costero A, Gil S, Parra M. Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie 2010;122:6081-4. [DOI: 10.1002/ange.201001088] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
2 Frigoli M, Ouadahi K, Larpent C. A Cascade FRET-Mediated Ratiometric Sensor for Cu 2+ Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles. Chem Eur J 2009;15:8319-30. [DOI: 10.1002/chem.200900475] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 5.5] [Reference Citation Analysis]
3 Wang Y, Ning B, Peng Y, Bai J, Liu M, Fan X, Sun Z, Lv Z, Zhou C, Gao Z. Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut. Biosensors and Bioelectronics 2013;41:391-6. [DOI: 10.1016/j.bios.2012.08.057] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 6.1] [Reference Citation Analysis]
4 Chatterjee S, Karuso P, Boulangé A, Franck X, Datta A. Excited State Dynamics of Brightly Fluorescent Second Generation Epicocconone Analogues. J Phys Chem B 2015;119:6295-303. [DOI: 10.1021/acs.jpcb.5b02190] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
5 Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015;44:5552-95. [PMID: 26021602 DOI: 10.1039/c4cs00382a] [Cited by in Crossref: 154] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
6 Ali SS, Gangopadhyay A, Maiti K, Mondal S, Pramanik AK, Guria UN, Uddin MR, Mandal S, Mandal D, Mahapatra AK. A chromogenic and ratiometric fluorogenic probe for rapid detection of a nerve agent simulant DCP based on a hybrid hydroxynaphthalene–hemicyanine dye. Org Biomol Chem 2017;15:5959-67. [DOI: 10.1039/c7ob01252g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 3.2] [Reference Citation Analysis]
7 Mayr T, Moser C, Klimant I. Performance of fluorescent labels in sedimentation bead arrays--a comparison study. J Fluoresc 2009;19:303-10. [PMID: 18807154 DOI: 10.1007/s10895-008-0416-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
8 He HJ, Zong Y, Bernier M, Wang L. Sensing the insulin signaling pathway with an antibody array. Proteomics Clin Appl 2009;3:1440-50. [PMID: 21136963 DOI: 10.1002/prca.200900020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
9 Costero AM, Parra M, Gil S, Gotor R, Mancini PM, Martínez-máñez R, Sancenón F, Royo S. Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chem Asian J 2010;5:1573-85. [DOI: 10.1002/asia.201000058] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 3.3] [Reference Citation Analysis]
10 Ouadahi K, Sbargoud K, Allard E, Larpent C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. Nanoscale 2012;4:727-32. [DOI: 10.1039/c2nr11413e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
11 Costero AM, Gil S, Parra M, Mancini PME, Martínez-máñez R, Sancenón F, Royo S. Chromogenic detection of nerve agent mimics. Chem Commun 2008. [DOI: 10.1039/b811247a] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 5.7] [Reference Citation Analysis]
12 Climent E, Martí A, Royo S, Martínez-máñez R, Marcos M, Sancenón F, Soto J, Costero A, Gil S, Parra M. Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition 2010;49:5945-8. [DOI: 10.1002/anie.201001088] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
13 Hou X, Liu B, Deng X, Zhang B, Chen H, Luo R. Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical Biochemistry 2007;368:100-10. [DOI: 10.1016/j.ab.2007.04.034] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
14 Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM. Multiplexed immunoassays for proteins using magnetic luminescent nanoparticles for internal calibration. Anal Biochem 2007;369:34-40. [PMID: 17681270 DOI: 10.1016/j.ab.2007.06.035] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
15 Ma Q, Song T, Wang X, Li Y, Shi Y, Su X. Quantum Dots as Fluorescent Labels for Use in Microsphere‐Based Fluoroimmunoassays. Spectroscopy Letters 2007;40:113-27. [DOI: 10.1080/00387010601094065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
16 Panda D, Khatua S, Datta A. Enhanced fluorescence of epicocconone in surfactant assemblies as a consequence of depth-dependent microviscosity. J Phys Chem B 2007;111:1648-56. [PMID: 17263570 DOI: 10.1021/jp065226o] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
17 Roda A, Guardigli M, Michelini E, Mirasoli M. Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 2009;393:109-23. [DOI: 10.1007/s00216-008-2435-8] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
18 Musshoff F, Madea B. Ricin poisoning and forensic toxicology. Drug Test Analysis 2009;1:184-91. [DOI: 10.1002/dta.27] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
19 Blais DR, Alvarez‐puebla RA, Bravo‐vasquez JP, Fenniri H, Pezacki JP. Multiplex pathogen detection based on spatially addressable microarrays of barcoded resins. Biotechnol J 2008;3:948-53. [DOI: 10.1002/biot.200700236] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
20 Bogomolova A. Sensing of Biowarfare Agents. In: Ram M, Bhethanabotla V, editors. Sensors for Chemical and Biological Applications. CRC Press; 2010. pp. 333-51. [DOI: 10.1201/9781420005042-c13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
21 Schofield CL, Mukhopadhyay B, Hardy SM, Mcdonnell MB, Field RA, Russell DA. Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008;133:626. [DOI: 10.1039/b715250g] [Cited by in Crossref: 84] [Cited by in F6Publishing: 71] [Article Influence: 6.0] [Reference Citation Analysis]
22 Rowland CE, Brown CW 3rd, Delehanty JB, Medintz IL. Nanomaterial-based sensors for the detection of biological threat agents. Mater Today (Kidlington) 2016;19:464-77. [PMID: 32288600 DOI: 10.1016/j.mattod.2016.02.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
23 Lubelli C, Chatgilialoglu A, Bolognesi A, Strocchi P, Colombatti M, Stirpe F. Detection of ricin and other ribosome-inactivating proteins by an immuno-polymerase chain reaction assay. Analytical Biochemistry 2006;355:102-9. [DOI: 10.1016/j.ab.2006.05.003] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 3.8] [Reference Citation Analysis]
24 Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, Zbinden R, Avondet MA, Dorner MB, Dorner BG. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 2009;134:2028-39. [PMID: 19768210 DOI: 10.1039/b911525k] [Cited by in Crossref: 91] [Cited by in F6Publishing: 76] [Article Influence: 7.0] [Reference Citation Analysis]