BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Duan X, Tian W, Zhang H, Sun H, Ao Z, Shao Z, Wang S. sp 2 /sp 3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catal 2019;9:7494-519. [DOI: 10.1021/acscatal.9b01565] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo X, Zhang H, Yao Y, Xiao C, Yan X, Chen K, Qi J, Zhou Y, Zhu Z, Sun X, Li J. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Applied Catalysis B: Environmental 2023;323:122136. [DOI: 10.1016/j.apcatb.2022.122136] [Reference Citation Analysis]
2 Chen M, Li H, Wang Y, Tang Z, Dai W, Li C, Yang Z, Wang J. Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol. Applied Energy 2023;332:120489. [DOI: 10.1016/j.apenergy.2022.120489] [Reference Citation Analysis]
3 Zhang R, Zheng Y, Liu J, Li C, Chen C, Hu X, Li J, Liu R, Ye H. Morphology-dependent antibacterial properties of diamond coatings. Functional Diamond 2022;2:203-213. [DOI: 10.1080/26941112.2022.2157225] [Reference Citation Analysis]
4 Shi Y, Zhao Q, Guan B, Li J, Gao G, Zhi J. Onion-like carbon with controllable carbon atom hybridization embedded in BiVO4 photoanode for enhanced photoelectrochemical water splitting. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.156120] [Reference Citation Analysis]
5 Duan P, Xu X, Guo K, Yue Q, Gao B. Peroxymonosulfate activation on a chainmail catalyst via an electron shuttle mechanism for efficient organic pollutant removal. Applied Catalysis B: Environmental 2022;316:121695. [DOI: 10.1016/j.apcatb.2022.121695] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Miao F, Yue X, Cheng C, Chen X, Ren W, Zhang H. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification. Water Research 2022. [DOI: 10.1016/j.watres.2022.119346] [Reference Citation Analysis]
7 Polynskaya YG, Matsokin NA, Sinitsa AS, Knizhnik AA, Potapkin BV. First-principles investigation of interaction between the atomic oxygen species and carbon nanostructures. Carbon Trends 2022;9:100201. [DOI: 10.1016/j.cartre.2022.100201] [Reference Citation Analysis]
8 Ren W, Zhang Q, Cheng C, Miao F, Zhang H, Luo X, Wang S, Duan X. Electro-Induced Carbon Nanotube Discrete Electrodes for Sustainable Persulfate Activation. Environ Sci Technol 2022. [PMID: 36062466 DOI: 10.1021/acs.est.2c03677] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhang S, Zheng M, Tang Y, Zang R, Zhang X, Huang X, Chen Y, Yamauchi Y, Kaskel S, Pang H. Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Adv Funct Materials. [DOI: 10.1002/adfm.202204714] [Reference Citation Analysis]
10 Zhang W, Jing P, Du J, Wu S, Yan W, Liu G. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites. Chinese Journal of Catalysis 2022;43:2231-9. [DOI: 10.1016/s1872-2067(21)64031-7] [Reference Citation Analysis]
11 Lu N, Yan X, Tan HL, Kobayashi H, Yu X, Li Y, Zhang J, Peng Z, Sui J, Zhang Z, Liu W, Li R, Li B. Carbon-catalyzed oxygen-mediated dehydrogenation of formaldehyde in alkaline solution for efficient hydrogen production. International Journal of Hydrogen Energy 2022. [DOI: 10.1016/j.ijhydene.2022.06.134] [Reference Citation Analysis]
12 Oyekunle DT, Gendy EA, Ifthikar J, Chen Z. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review. Chemical Engineering Journal 2022;437:135277. [DOI: 10.1016/j.cej.2022.135277] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
13 Bogdanowicz R. Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants. Current Opinion in Solid State and Materials Science 2022;26:100991. [DOI: 10.1016/j.cossms.2022.100991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Dong C, Gao Z, Li Y, Peng M, Wang M, Xu Y, Li C, Xu M, Deng Y, Qin X, Huang F, Wei X, Wang Y, Liu H, Zhou W, Ma D. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat Catal. [DOI: 10.1038/s41929-022-00769-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
15 Xu G, Zhang W, Du J, Yuan X, Zhang W, Yan W, Liu G. Biomass-derived porous carbon with high drug adsorption capacity undergoes enzymatic and chemical degradation. J Colloid Interface Sci 2022;622:87-96. [PMID: 35489104 DOI: 10.1016/j.jcis.2022.04.064] [Reference Citation Analysis]
16 Wang L, Yin P, Zeng W, Xu S, Chen P, Liang H. Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3Pb catalysts. Nano Res . [DOI: 10.1007/s12274-022-4138-4] [Reference Citation Analysis]
17 Liu Y, Zhang Y, Zhang J, Li W, Zhou P, Pan Z, Lai B. Nonradical induced degradation of bisphenol AF by NaBiO3 coupled peroxymonosulfate process: Performance and mechanism. Separation and Purification Technology 2022;285:120356. [DOI: 10.1016/j.seppur.2021.120356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lin SY, Xia LX, Cao Y, Meng HL, Zhang L, Feng JJ, Zhao Y, Wang AJ. Electronic Regulation of ZnCo Dual-Atomic Active Sites Entrapped in 1D@2D Hierarchical N-Doped Carbon for Efficient Synergistic Catalysis of Oxygen Reduction in Zn-Air Battery. Small 2022;:e2107141. [PMID: 35182019 DOI: 10.1002/smll.202107141] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
19 Ding Y, Chen Y, Guan Z, Zhao Y, Lin J, Jiao Y, Tian G. Hierarchical CuS@ZnIn2S4 Hollow Double-Shelled p-n Heterojunction Octahedra Decorated with Fullerene C60 for Remarkable Selectivity and Activity of CO2 Photoreduction into CH4. ACS Appl Mater Interfaces 2022;14:7888-99. [PMID: 35107251 DOI: 10.1021/acsami.1c20980] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Bogdanowicz R, Ryl J. Structural and electrochemical heterogeneities of boron-doped diamond surfaces. Current Opinion in Electrochemistry 2022;31:100876. [DOI: 10.1016/j.coelec.2021.100876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hung C, Chen C, Huang C, Cheng J, Dong C. Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. Journal of Cleaner Production 2022;336:130448. [DOI: 10.1016/j.jclepro.2022.130448] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
22 Ender CP, Liang J, Friebel J, Zapata T, Wagner M, Ermakova A, Weil T. Mechanistic insights of seeded diamond growth from molecular precursors. Diamond and Related Materials 2022;122:108796. [DOI: 10.1016/j.diamond.2021.108796] [Reference Citation Analysis]
23 Rodríguez-narvaez OM, Medina-orendain DA, Mendez-alvarado LN. Functionalized green carbon-based nanomaterial for environmental application. Sustainable Nanotechnology for Environmental Remediation 2022. [DOI: 10.1016/b978-0-12-824547-7.00005-9] [Reference Citation Analysis]
24 Ren W, Cheng C, Shao P, Luo X, Zhang H, Wang S, Duan X. Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. Environ Sci Technol 2021. [PMID: 34932343 DOI: 10.1021/acs.est.1c05374] [Cited by in Crossref: 81] [Cited by in F6Publishing: 108] [Article Influence: 40.5] [Reference Citation Analysis]
25 Luo H, Fu H, Yin H, Lin Q. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites. J Hazard Mater 2021;426:128044. [PMID: 34933260 DOI: 10.1016/j.jhazmat.2021.128044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
26 Shao P, Jing Y, Duan X, Lin H, Yang L, Ren W, Deng F, Li B, Luo X, Wang S. Revisiting the Graphitized Nanodiamond-Mediated Activation of Peroxymonosulfate: Singlet Oxygenation versus Electron Transfer. Environ Sci Technol 2021;55:16078-87. [PMID: 34633787 DOI: 10.1021/acs.est.1c02042] [Cited by in Crossref: 35] [Cited by in F6Publishing: 47] [Article Influence: 17.5] [Reference Citation Analysis]
27 Jian Z, Xu J, Yang N, Han S, Jiang X. A perspective on diamond composites and their electrochemical applications. Current Opinion in Electrochemistry 2021;30:100835. [DOI: 10.1016/j.coelec.2021.100835] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Bernat-quesada F, Vallés-garcía C, Montero-lanzuela E, López-francés A, Ferrer B, Baldoví HG, Navalón S. Hybrid sp2/sp3 nanodiamonds as heterogeneous metal-free ozonation catalysts in water. Applied Catalysis B: Environmental 2021;299:120673. [DOI: 10.1016/j.apcatb.2021.120673] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang P, Yang Y, Duan X, Liu Y, Wang S. Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. ACS Catal 2021;11:11129-59. [DOI: 10.1021/acscatal.1c03099] [Cited by in Crossref: 49] [Cited by in F6Publishing: 59] [Article Influence: 24.5] [Reference Citation Analysis]
30 Zhang T, Ma L, Wang L, Xu F, Wei Q, Wang W, Lin Y, Chu Z. Scalable Fabrication of Clean Nanodiamonds via Salt-Assisted Air Oxidation: Implications for Sensing and Imaging. ACS Appl Nano Mater 2021;4:9223-30. [DOI: 10.1021/acsanm.1c01751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Song H, Guan Z, Chen L, Xu H, Xia D, Huang M, Li D. Role of curvature in a carbon electronic structure under spatial confinement: Conversion of nonradicals to radicals. Carbon 2021;180:22-30. [DOI: 10.1016/j.carbon.2021.04.088] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
32 Wu S, Yu L, Wen G, Xie Z, Lin Y. Recent progress of carbon-based metal-free materials in thermal-driven catalysis. Journal of Energy Chemistry 2021;58:318-35. [DOI: 10.1016/j.jechem.2020.10.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
33 Mani N, Ahnood A, Peng D, Tong W, Booth M, Jones A, Murdoch B, Tran N, Houshyar S, Fox K. Single-Step Fabrication Method toward 3D Printing Composite Diamond-Titanium Interfaces for Neural Applications. ACS Appl Mater Interfaces 2021;13:31474-84. [PMID: 34192459 DOI: 10.1021/acsami.1c07318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Zhao B, Bai P, Wang S, Ji H, Fan B, Zhang R, Che R. High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Appl Mater Interfaces 2021;13:29101-12. [PMID: 34114791 DOI: 10.1021/acsami.1c05327] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
35 Wu S, Wen G, Su Y, Pan X, Yan H, Diao J, Liu H. Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as Efficient Renewable Catalyst for Selective Reduction of Nitroarenes. J Phys Chem C 2021;125:5127-35. [DOI: 10.1021/acs.jpcc.1c00620] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Liu W, Nie C, Li W, Ao Z, Wang S, An T. Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: Performances and the key role of carbonyl groups in electron-transfer mechanism. J Hazard Mater 2021;414:125552. [PMID: 34030409 DOI: 10.1016/j.jhazmat.2021.125552] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
37 Yu J, Zhu Z, Zhang H, Qiu Y, Yin D, Cheng Y, Wang S. Stepwise carbonization of nanocellulose to N-doped carbons with structural transformation and enhanced peroxymonosulfate activation. Chemical Engineering Journal 2021;407:127185. [DOI: 10.1016/j.cej.2020.127185] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
38 Zhao K, Quan X. Carbon-Based Materials for Electrochemical Reduction of CO 2 to C 2+ Oxygenates: Recent Progress and Remaining Challenges. ACS Catal 2021;11:2076-97. [DOI: 10.1021/acscatal.0c04714] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 21.0] [Reference Citation Analysis]
39 Knizhnik AA, Polynskaya YG, Sinitsa AS, Kuznetsov NM, Belousov SI, Chvalun SN, Potapkin BV. Analysis of structural organization and interaction mechanisms of detonation nanodiamond particles in hydrosols. Phys Chem Chem Phys 2021;23:674-82. [PMID: 33336663 DOI: 10.1039/d0cp05533f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Oyekunle DT, Zhou X, Shahzad A, Chen Z. Review on carbonaceous materials as persulfate activators: structure–performance relationship, mechanism and future perspectives on water treatment. J Mater Chem A 2021;9:8012-50. [DOI: 10.1039/d1ta00033k] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 18.0] [Reference Citation Analysis]
41 Zhang C, Chen X, Chou WC, Ho SH. Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses. Chemosphere 2021;270:129473. [PMID: 33401071 DOI: 10.1016/j.chemosphere.2020.129473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Du P, Zhang X, Zhang S, Zhao Y, Zhang L, Zhang B, Yang B. CO x ‐Resistant Oxidative Dehydrogenation of Cyclohexane Catalyzed by sp 3 @sp 2 Nanodiamonds towards Highly Selective Cyclohexene Production. ChemCatChem 2021;13:610-6. [DOI: 10.1002/cctc.202001380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Wang Y, Duan X, Xie Y, Sun H, Wang S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal 2020;10:13383-414. [DOI: 10.1021/acscatal.0c04232] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 16.7] [Reference Citation Analysis]
44 Tomita Y, Kageyama A, Iso Y, Umemoto K, Kume A, Liu M, Pruner C, Jenke T, Roccia S, Geltenbort P, Fally M, Klepp J. Fabrication of nanodiamond-dispersed composite holographic gratings and their light and slow-neutron diffraction properties. Phys Rev Applied 2020;14. [DOI: 10.1103/physrevapplied.14.044056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
45 Zhang M, Han C, Chen W, Luo W, Cao Y, Qian G, Zhou X, Duan X, Wang S, Duan X. Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal. Green Energy & Environment 2020;5:444-52. [DOI: 10.1016/j.gee.2020.05.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
46 Bao T, Damtie MM, Hosseinzadeh A, Frost RL, Yu ZM, Jin J, Wu K. Catalytic degradation of P-chlorophenol by muscovite-supported nano zero valent iron composite: Synthesis, characterization, and mechanism studies. Applied Clay Science 2020;195:105735. [DOI: 10.1016/j.clay.2020.105735] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 8.7] [Reference Citation Analysis]
47 Sun P, Liu H, Feng M, Zhai Z, Fang Y, Zhang X, Sharma VK. Strategic combination of N-doped graphene and g-C3N4: Efficient catalytic peroxymonosulfate-based oxidation of organic pollutants by non-radical-dominated processes. Applied Catalysis B: Environmental 2020;272:119005. [DOI: 10.1016/j.apcatb.2020.119005] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 28.0] [Reference Citation Analysis]
48 Liu K, Bai L, Shi Y, Wei Z, Spinney R, Göktaş RK, Dionysiou DD, Xiao R. Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: An experimental and modelling study. Environmental Pollution 2020;263:114558. [DOI: 10.1016/j.envpol.2020.114558] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
49 Navalón S, Ong W, Duan X. Sustainable Catalytic Processes Driven by Graphene-Based Materials. Processes 2020;8:672. [DOI: 10.3390/pr8060672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
50 Peng Q, Dai Y, Liu K, Luo X, He D, Tang X, Huang G. A novel carbon nanotube–magnesium oxide composite with excellent recyclability to efficiently activate peroxymonosulfate for Rhodamine B degradation. J Mater Sci 2020;55:11267-83. [DOI: 10.1007/s10853-020-04822-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
51 Gordeev EG, Pentsak EO, Ananikov VP. Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization. J Am Chem Soc 2020;142:3784-96. [PMID: 32058705 DOI: 10.1021/jacs.9b10887] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
52 Zhang C, Huang X, Chu Y, Ren N, Ho S. An overlooked effect induced by surface modification: different molecular response of Chlorella pyrenoidosa to graphitized and oxidized nanodiamonds. Environ Sci : Nano 2020;7:2302-12. [DOI: 10.1039/d0en00444h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]