BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun G, Jin Y, Li S, Yang Z, Shi B, Chang C, Abramov YA. Virtual Coformer Screening by Crystal Structure Predictions: Crucial Role of Crystallinity in Pharmaceutical Cocrystallization. J Phys Chem Lett 2020;11:8832-8. [PMID: 32969658 DOI: 10.1021/acs.jpclett.0c02371] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Abramov YA, Sun G, Zeng Q. Emerging Landscape of Computational Modeling in Pharmaceutical Development. J Chem Inf Model 2022. [PMID: 35226809 DOI: 10.1021/acs.jcim.1c01580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sugden IJ, Braun DE, Bowskill DH, Adjiman CS, Pantelides CC. Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization. Crystal Growth & Design. [DOI: 10.1021/acs.cgd.2c00433] [Reference Citation Analysis]
3 Khalaji M, Potrzebowski MJ, Dudek MK. Virtual Cocrystal Screening Methods as Tools to Understand the Formation of Pharmaceutical Cocrystals—A Case Study of Linezolid, a Wide-Range Antibacterial Drug. Crystal Growth & Design 2021;21:2301-14. [DOI: 10.1021/acs.cgd.0c01707] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
4 Jiang Y, Yang Z, Guo J, Li H, Liu Y, Guo Y, Li M, Pu X. Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials. Nat Commun 2021;12:5950. [PMID: 34642333 DOI: 10.1038/s41467-021-26226-7] [Reference Citation Analysis]
5 Yuan J, Liu X, Wang S, Chang C, Zeng Q, Song Z, Jin Y, Zeng Q, Sun G, Ruan S, Greenwell C, Abramov YA. Virtual coformer screening by a combined machine learning and physics-based approach. CrystEngComm 2021;23:6039-44. [DOI: 10.1039/d1ce00587a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Hughes DS, Bingham AL, Hursthouse MB, Threlfall TL, Bond AD. The extensive solid-form landscape of sulfathiazole: geometrical similarity and interaction energies. CrystEngComm. [DOI: 10.1039/d1ce01516h] [Reference Citation Analysis]
7 Sun G, Liu X, Abramov YA, Nilsson Lill SO, Chang C, Burger V, Broo A. Current State-of-the-art In-house and Cloud-Based Applications of Virtual Polymorph Screening of Pharmaceutical Compounds: A Challenging Case of AZD1305. Crystal Growth & Design 2021;21:1972-83. [DOI: 10.1021/acs.cgd.0c01266] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
8 Sarathi P, Padhi S. Insight of the various in silico screening techniques developed for assortment of cocrystal formers and their thermodynamic characterization. Drug Dev Ind Pharm 2022;:1-12. [PMID: 35164621 DOI: 10.1080/03639045.2022.2042554] [Reference Citation Analysis]
9 Abramov YA, Li B, Chang C, Zeng Q, Sun G, Gobbo G. Uncertainty Distribution of Crystal Structure Prediction. Crystal Growth & Design 2021;21:5496-502. [DOI: 10.1021/acs.cgd.1c00527] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Parkan A, Mirzaei M, Tavakoli N, Homayouni A. Molecular interactions of indomethacin and amino acids: Computational approach. MGC 2021. [DOI: 10.3233/mgc-210157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Perlovich GL. Two-Component Molecular Crystals: What Is the Difference between Drug–Drug, Drug–GRAS, and CF–CF Databases? Evaluation of Melting Points and Ideal Solubility of Unknown Co-crystals. Crystal Growth & Design 2021;21:5058-71. [DOI: 10.1021/acs.cgd.1c00477] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021;11:2537-64. [PMID: 34522597 DOI: 10.1016/j.apsb.2021.03.030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 20.0] [Reference Citation Analysis]
13 Lee M, Kim J, Kim P, Lee I, Mswahili ME, Jeong Y, Choi GJ. Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery. Pharmaceutics 2022;14:429. [DOI: 10.3390/pharmaceutics14020429] [Reference Citation Analysis]
14 Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021;23:7005-38. [DOI: 10.1039/d1ce00825k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
15 Sekharan S, Liu X, Yang Z, Liu X, Deng L, Ruan S, Abramov Y, Sun G, Li S, Zhou T, Shi B, Zeng Q, Zeng Q, Chang C, Jin Y, Shi X. Selecting a stable solid form of remdesivir using microcrystal electron diffraction and crystal structure prediction. RSC Adv 2021;11:17408-12. [PMID: 35479679 DOI: 10.1039/d1ra03100g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sandhu B, Savage SA, Park H, Ilott A, Albrecht J, Yin S, Sarjeant AA. Using In Silico Tools To Map the Structural Landscape of Nitroxyl (HNO Donor) Compounds. Crystal Growth & Design. [DOI: 10.1021/acs.cgd.1c01486] [Reference Citation Analysis]