BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016;116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Cited by in Crossref: 538] [Cited by in F6Publishing: 464] [Article Influence: 89.7] [Reference Citation Analysis]
Number Citing Articles
1 Jain U, Balayan S, Chauhan N. Potential and practical applications of bioelectrochemical sensors. Multifaceted Bio-Sensing Technology 2023. [DOI: 10.1016/b978-0-323-90807-8.00001-4] [Reference Citation Analysis]
2 Nath PC, Nandi NB, Tiwari A, Das J, Roy B. Applications of nanotechnology in food sensing and food packaging. Nanotechnology Applications for Food Safety and Quality Monitoring 2023. [DOI: 10.1016/b978-0-323-85791-8.00006-9] [Reference Citation Analysis]
3 Manoj D, Shanmugasundaram S, Sunil C. Plasmonic Biosensors for Food Safety. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00149-7] [Reference Citation Analysis]
4 Wu W, Wu J, Huang H, Qiao B, Jiang C, Shi Y, Wang C, Pei H, Xu Q, Wu X, Wu Q, Ju H. Electrochemiluminescence biosensing of gene-specific methylation through magnetic capture and functional [Ru(byp)3]2+-doped silica. Sensors and Actuators B: Chemical 2023;375:132857. [DOI: 10.1016/j.snb.2022.132857] [Reference Citation Analysis]
5 Lima RS, Strauss M, Santhiago M. Sensing Materials: Flexible Carbon-Based Electrochemical Devices Based on the Three-Dimensional Architecture of Paper. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00026-1] [Reference Citation Analysis]
6 Liu Y, Liu Y, Ou H, Shi D, Tian L, Chen Z, Bao S, Xiao W, Meng X, Hu R, Song J, Chen W, Cheng Z, Zhao G. Design of Ni(OH)2 nano-boxes@CuS nanosheets hollow hierarchical structure to achieve synergistic catalysis for high sensitivity dopamine electrochemical sensing. Journal of Alloys and Compounds 2022;929:167390. [DOI: 10.1016/j.jallcom.2022.167390] [Reference Citation Analysis]
7 Sulleiro MV, Dominguez-alfaro A, Alegret N, Silvestri A, Gómez IJ. 2D Materials towards sensing technology: From fundamentals to applications. Sensing and Bio-Sensing Research 2022;38:100540. [DOI: 10.1016/j.sbsr.2022.100540] [Reference Citation Analysis]
8 Guo Z, Tian R, Xu W, Yip D, Radyk M, Santos FB, Yip A, Chen T, Tang XS. Highly accurate heart failure classification using carbon nanotube thin film biosensors and machine learning assisted data analysis. Biosensors and Bioelectronics: X 2022;12:100187. [DOI: 10.1016/j.biosx.2022.100187] [Reference Citation Analysis]
9 Mohamed Ibrahim A, Abdel-haleem FM, Salah A, Rizk MS, Abdel-latif SA, Omar Turky A, Rashad MM, Barhoum A. Development of potentiometric sensors based on thiourea derivatives, Gd2O3@rGO and MoO3@rGO for the determination of salicylate in drug tablets and biofluids and DFT studies. Microchemical Journal 2022;183:108064. [DOI: 10.1016/j.microc.2022.108064] [Reference Citation Analysis]
10 Yadav AK, Verma D, Dalal N, Kumar A, Solanki PR. Molecularly imprinted polymer-based nanodiagnostics for clinically pertinent bacteria and virus detection for future pandemics. Biosensors and Bioelectronics: X 2022;12:100257. [DOI: 10.1016/j.biosx.2022.100257] [Reference Citation Analysis]
11 Li Z, Luo Y, Song Y, Zhu Q, Xu T, Zhang X. One-click investigation of shape influence of silver nanostructures on SERS performance for sensitive detection of COVID-19. Analytica Chimica Acta 2022;1234:340523. [DOI: 10.1016/j.aca.2022.340523] [Reference Citation Analysis]
12 Chavan SG, Yagati AK, Koyappayil A, Go A, Yeon S, Lee T, Lee M. Conformationally Flexible Dimeric-Serotonin-Based Sensitive and Selective Electrochemical Biosensing Strategy for Serotonin Recognition. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c02747] [Reference Citation Analysis]
13 He H, Zhou L, Guo Z, Li P, Gao S, Liu Z. Dual Biomimetic Recognition-Driven Plasmonic Nanogap-Enhanced Raman Scattering for Ultrasensitive Protein Fingerprinting and Quantitation. Nano Lett 2022. [DOI: 10.1021/acs.nanolett.2c03857] [Reference Citation Analysis]
14 Liu J, Zhang Z, Li Y, Dong J, Li C. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on two-dimensional PtPd/Cu-TCPP(Fe) nanocomposites. Anal Bioanal Chem 2022. [DOI: 10.1007/s00216-022-04425-5] [Reference Citation Analysis]
15 Blasques RV, Stefano JS, Camargo JR, Guterres e Silva LR, Brazaca LC, Janegitz BC. Disposable Prussian blue-anchored electrochemical sensor for enzymatic and non-enzymatic multi-analyte detection. Sensors and Actuators Reports 2022;4:100118. [DOI: 10.1016/j.snr.2022.100118] [Reference Citation Analysis]
16 Li X, Mao M, Han K, Yao C, Gu B, He J, Li D. 3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101041] [Reference Citation Analysis]
17 Otero F, Mandal T, Leech D, Magner E. An electrochemical NADH biosensor based on a nanoporous gold electrode modified with diaphorase and an osmium polymer. Sensors and Actuators Reports 2022;4:100117. [DOI: 10.1016/j.snr.2022.100117] [Reference Citation Analysis]
18 Liu Z, Chen J, Huang S, Yan Y, Niu Y, Zeng J, Huang Q, Jin M, Shui L. Label-free biosensor for trace insulin-like growth factor-I assay based on rGO-SnS2 heterostructure nanocomposite. Sensors and Actuators B: Chemical 2022;370:132415. [DOI: 10.1016/j.snb.2022.132415] [Reference Citation Analysis]
19 Huang W, Xu Y, Wang Z, Liao K, Zhang Y, Sun Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta 2022;249:123612. [DOI: 10.1016/j.talanta.2022.123612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in Biosensing Technologies for Diagnosis of COVID-19. Biosensors (Basel) 2022;12:898. [PMID: 36291035 DOI: 10.3390/bios12100898] [Reference Citation Analysis]
21 Perju A, Baeumner AJ, Wongkaew N. Freestanding 3D-interconnected carbon nanofibers as high-performance transducers in miniaturized electrochemical sensors. Mikrochim Acta 2022;189:424. [PMID: 36255531 DOI: 10.1007/s00604-022-05492-2] [Reference Citation Analysis]
22 Vieira D, Barralet J, Harvey EJ, Merle G. Detecting the PEX Like Domain of Matrix Metalloproteinase-14 (MMP-14) with Therapeutic Conjugated CNTs. Biosensors (Basel) 2022;12:884. [PMID: 36291022 DOI: 10.3390/bios12100884] [Reference Citation Analysis]
23 Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2022;:1-89. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Reference Citation Analysis]
24 Liu F, Jiang X, He N, Yu R, Xue Z, Liu X. Electrochemical investigation for enhancing cellular antioxidant defense system based on a superoxide anion sensor. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132190] [Reference Citation Analysis]
25 Bagyalakshmi S, Sivakami A, Pal K, Sarankumar R, Mahendran C. Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05576-3] [Reference Citation Analysis]
26 Xie FT, Li YL, Yang T, Yang YH, Hu R. Metal-Organic Framework UiO-66-Mediated Dual-Signal Ratiometric Electrochemical Sensor for microRNA Detection with DNA Walker Amplification. Langmuir 2022. [PMID: 36148509 DOI: 10.1021/acs.langmuir.2c00932] [Reference Citation Analysis]
27 Dăscălescu D, Apetrei C. Development of a Novel Electrochemical Biosensor Based on Organized Mesoporous Carbon and Laccase for the Detection of Serotonin in Food Supplements. Chemosensors 2022;10:365. [DOI: 10.3390/chemosensors10090365] [Reference Citation Analysis]
28 Li X, Jiang H, He N, Yuan W, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems 2022;2022:1-20. [DOI: 10.34133/2022/9892526] [Reference Citation Analysis]
29 Nadar PM, Merrill MA, Austin K, Strakowski SM, Halpern JM. The emergence of psychoanalytical electrochemistry: the translation of MDD biomarker discovery to diagnosis with electrochemical sensing. Transl Psychiatry 2022;12:372. [PMID: 36075922 DOI: 10.1038/s41398-022-02138-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Li J, Wang G, Gou X, Xiang J, Huang QT, Liu G. Revealing Trace Nanoplastics in Food Packages─An Electrochemical Approach Facilitated by Synergistic Attraction of Electrostatics and Hydrophobicity. Anal Chem 2022. [PMID: 36070514 DOI: 10.1021/acs.analchem.2c01703] [Reference Citation Analysis]
31 Chen W, Zhang Y, Lai Q, Li Y, Liu Z. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus. Appl Microbiol Biotechnol 2022. [PMID: 36058939 DOI: 10.1007/s00253-022-12057-z] [Reference Citation Analysis]
32 Oh DE, Lee C, Kim TH. Simultaneous and individual determination of seven biochemical species using a glassy carbon electrode modified with a nanocomposite of Pt nanoparticle and graphene by a one-step electrochemical process. Talanta 2022;247:123590. [DOI: 10.1016/j.talanta.2022.123590] [Reference Citation Analysis]
33 Chen YG, Li CX, Zhang Y, Qi YD, Liu XH, Feng J, Zhang XZ. Hybrid suture coating for dual-staged control over antibacterial actions to match well wound healing progression. Mater Horiz 2022. [PMID: 36039967 DOI: 10.1039/d2mh00591c] [Reference Citation Analysis]
34 Perera TR, Skerrett-byrne DA, Gibb Z, Nixon B, Swegen A. The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals 2022;12:2194. [DOI: 10.3390/ani12172194] [Reference Citation Analysis]
35 Sun P, Niu K, Du H, Li R, Chen J, Lu X. Sensitive Electrochemical Biosensor for Rapid Screening of Tumor Biomarker TP53 Gene Mutation Hotspot. Biosensors 2022;12:658. [DOI: 10.3390/bios12080658] [Reference Citation Analysis]
36 Park S, Lee H, Yang H. Sensitive Affinity-Based Biosensor Using the Autocatalytic Activation of Trypsinogen Mutant by Trypsin with Low Self-activation. ACS Appl Bio Mater 2022. [PMID: 35972302 DOI: 10.1021/acsabm.2c00594] [Reference Citation Analysis]
37 Xiong Y, Huang Q, Canady TD, Barya P, Liu S, Arogundade OH, Race CM, Che C, Wang X, Zhou L, Wang X, Kohli M, Smith AM, Cunningham BT. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat Commun 2022;13:4647. [PMID: 35941132 DOI: 10.1038/s41467-022-32387-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Wang H, Jiang S, Pan J, Lin J, Wang J, Li M, Xie A, Luo S. Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Mikrochim Acta 2022;189:318. [PMID: 35931898 DOI: 10.1007/s00604-022-05403-5] [Reference Citation Analysis]
39 Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Reference Citation Analysis]
40 De A, Shee Kanrar S, Sarkar SK. Investigation into MoTe2 Based Dielectric Modulated AMFET Biosensor for Label-Free Detection of DNA Including Electric Variational Effects. Silicon 2022;14:6787-6799. [DOI: 10.1007/s12633-021-01423-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Mostafa IM, Tian Y, Anjum S, Hanif S, Hosseini M, Lou B, Xu G. Comprehensive review on the electrochemical biosensors of different breast cancer biomarkers. Sensors and Actuators B: Chemical 2022;365:131944. [DOI: 10.1016/j.snb.2022.131944] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
42 Ma X, Wu Y, She J, Zhao A, Yang S, Yang X, Xiao F, Sun Y. On-chip electrochemical sensing of neurotransmitter in nerve cells by functionalized graphene fiber microelectrode. Sensors and Actuators B: Chemical 2022;365:131874. [DOI: 10.1016/j.snb.2022.131874] [Reference Citation Analysis]
43 Khoshnevisan K, Chehrehgosha M, Sajjadi-jazi SM, Meftah AM. Tryptophan and serotonin levels as potent biomarkers in diabetes mellitus complications: a new approach of diagnostic role. J Diabetes Metab Disord. [DOI: 10.1007/s40200-022-01096-y] [Reference Citation Analysis]
44 Huang S, Liu Z, Yan Y, Chen J, Yang R, Huang Q, Jin M, Shui L. Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. Biosensors and Bioelectronics 2022;207:114129. [DOI: 10.1016/j.bios.2022.114129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
45 Zhang T, Zhou P, Simon T, Cui T. Vibrating a sessile droplet to enhance mass transfer for high-performance electrochemical sensors. Sensors and Actuators B: Chemical 2022;362:131788. [DOI: 10.1016/j.snb.2022.131788] [Reference Citation Analysis]
46 Hao Y, Zhang Y, Zhu D, Luo L, Chen L, Tang Z, Zeng R, Xu M, Chen S. Dual-emission fluorescent probe for discriminative sensing of biothiols. Chinese Journal of Analytical Chemistry 2022. [DOI: 10.1016/j.cjac.2022.100153] [Reference Citation Analysis]
47 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Rashed M, Ahmed J, Faisal M, Alsareii S, Jalalah M, Tirth V, Harraz FA. Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surfaces and Interfaces 2022;31:101998. [DOI: 10.1016/j.surfin.2022.101998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Peng Y, Raj N, Strasser JW, Crooks RM. Paper Biosensor for the Detection of NT-proBNP Using Silver Nanodisks as Electrochemical Labels. Nanomaterials 2022;12:2254. [DOI: 10.3390/nano12132254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Vujacic-Mirski K, Oelze M, Kuntic I, Kuntic M, Kalinovic S, Li H, Zielonka J, Münzel T, Daiber A. Measurement of Tetrahydrobiopterin in Animal Tissue Samples by HPLC with Electrochemical Detection-Protocol Optimization and Pitfalls. Antioxidants (Basel) 2022;11:1182. [PMID: 35740082 DOI: 10.3390/antiox11061182] [Reference Citation Analysis]
51 Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022;61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M, Omidian H, Omidi Y. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochim Acta 2022;189:252. [PMID: 35687204 DOI: 10.1007/s00604-022-05316-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Cai Z, Xu X, Meng Z, Rafique B, Liu R. Colloidal Photonic Crystal Sensors. Functional Materials from Colloidal Self‐Assembly 2022. [DOI: 10.1002/9783527828722.ch7] [Reference Citation Analysis]
54 Wang Z, Tu J, Dong P, Bai Y, Han J, Xie G. BSA-Cu3(PO4)2 hybrid nanoflowers as a high-performance redox indicator for robust label-free electrochemical immunoassay. Analytica Chimica Acta 2022;1210:339873. [DOI: 10.1016/j.aca.2022.339873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Wang L, Wang X, Chen Z, Liu S. Electrochemical DNA Scaffold-Based Sensing Platform for Multiple Modes of Protein Assay and a Keypad Lock System. Anal Chem 2022. [PMID: 35649122 DOI: 10.1021/acs.analchem.2c00800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. Adv Mater 2022;:e2109764. [PMID: 35390209 DOI: 10.1002/adma.202109764] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
57 Nasrollahpour H, Khalilzadeh B, Naseri A, Yousefi H, Erk N, Rahbarghazi R. Electrochemical biosensors for stem cell analysis; applications in diagnostics, differentiation and follow-up. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116696] [Reference Citation Analysis]
58 Bhardwaj P, Kant R, Behera SP, Dwivedi GR, Singh R. Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection. Int J Mol Sci 2022;23:6052. [PMID: 35682737 DOI: 10.3390/ijms23116052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zhu Q, Yang Y, Gao H, Xu LP, Wang S. Bioinspired superwettable electrodes towards electrochemical biosensing. Chem Sci 2022;13:5069-84. [PMID: 35655548 DOI: 10.1039/d2sc00614f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
60 Tang T, Liu Y, Jiang Y. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2084-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Curti F, Fortunati S, Knoll W, Giannetto M, Corradini R, Bertucci A, Careri M. A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein. ACS Appl Mater Interfaces 2022;14:19204-11. [PMID: 35446532 DOI: 10.1021/acsami.2c02405] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
62 Javed Ansari M, Olegovich Bokov D, Abdalkareem Jasim S, Rudiansyah M, Suksatan W, Yasin G, Chupradit S, Alkaim AF, Fakri Mustafa Y, Imad Tarek D. Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. Journal of Molecular Liquids 2022;354:118895. [DOI: 10.1016/j.molliq.2022.118895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Centane S, Nyokong T. Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. Journal of Inorganic Biochemistry 2022;230:111764. [DOI: 10.1016/j.jinorgbio.2022.111764] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Liu Q, Shen H, Li B, Cai J, Peng Y, Weng Z, Yu H, Xie G, Feng W. A Target-Feedback Rolling-Cleavage Signal Amplifier for Ultrasensitive Electrochemical Detection of miRNA with Self-Assembled CeO2@Ag Hybrid Nanoflowers. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Li Y, Tang H, Liu Y, Qiao Y, Xia H, Zhou J. Oral wearable sensors: Health management based on the oral cavity. Biosensors and Bioelectronics: X 2022;10:100135. [DOI: 10.1016/j.biosx.2022.100135] [Reference Citation Analysis]
66 Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angewandte Chemie. [DOI: 10.1002/ange.202202211] [Reference Citation Analysis]
67 Sankar K, Baer R, Grazon C, Sabatelle RC, Lecommandoux S, Klapperich CM, Galagan JE, Grinstaff MW. An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone. ACS Sens 2022;7:1132-7. [PMID: 35412319 DOI: 10.1021/acssensors.2c00133] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Li Y, Song Z, Chen M, Xu Z, Zhao S, Xu Y, Luo X. Designed multifunctional peptides with two recognizing branches specific for one target to achieve highly sensitive and low fouling electrochemical protein assay in human serum. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339841] [Reference Citation Analysis]
69 Cui M, Zhao H, Wen X, Li N, Ren J, Zhang C. Facile synthesis of nickel phosphate nanorods as biomimetic enzyme with excellent electrocatalytic activity for highly sensitive detection of superoxide anion released from living cells. Journal of Pharmaceutical and Biomedical Analysis 2022;212:114653. [DOI: 10.1016/j.jpba.2022.114653] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Shamagsumova R, Shurpik D, Kuzin Y, Stoikov I, Rogov A, Evtugyn G. Pillar[6]arene: Electrochemistry and Application in Electrochemical (Bio)sensors. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116281] [Reference Citation Analysis]
71 Yao T, Dong G, Qian S, Cui Y, Chen X, Tan T, Li L. Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine. Sensors and Actuators B: Chemical 2022;357:131470. [DOI: 10.1016/j.snb.2022.131470] [Reference Citation Analysis]
72 Maqsood M, Bader Ul Ain H, Tufail T, Bibi S, Ahmad B, Imran S, Kanwal J, Ali M, Ijaz N, Ahmad S. Evaluating the Anti-Diabetic Effect of Ginger Powder in Experimental Rats. PBMJ 2022. [DOI: 10.54393/pbmj.v5i3.333] [Reference Citation Analysis]
73 Huang W, Xu Y, Sun Y. Functionalized Graphene Fiber Modified With MOF-Derived Rime-Like Hierarchical Nanozyme for Electrochemical Biosensing of H2O2 in Cancer Cells. Front Chem 2022;10:873187. [DOI: 10.3389/fchem.2022.873187] [Reference Citation Analysis]
74 Tigari G, Manjunatha JG, Souza ED, Raril C, Hareesha N, Charithra MM. Electrochemical determination of levofloxacin drug at poly(clayton yellow)/carbon paste electrode. Monatsh Chem. [DOI: 10.1007/s00706-022-02910-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Tang F, Wu C, Zhai Z, Wang K, Liu X, Xiao H, Zhuo S, Li P, Tang B. Recent progress in small-molecule fluorescent probes for endoplasmic reticulum imaging in biological systems. Analyst 2022;147:987-1005. [PMID: 35230358 DOI: 10.1039/d1an02290c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
76 Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. Sensors (Basel) 2022;22:2238. [PMID: 35336408 DOI: 10.3390/s22062238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
77 Correira JM, Webb LJ. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. Langmuir 2022. [PMID: 35276042 DOI: 10.1021/acs.langmuir.1c03399] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Qin J, Wang W, Gao L, Yao SQ. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem Sci 2022;13:2857-76. [PMID: 35382472 DOI: 10.1039/d1sc06269g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
79 Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Alencar WLM, da Silva Arouche T, Neto AFG, de Castro Ramalho T, de Carvalho Júnior RN, de Jesus Chaves Neto AM. Interactions of Co, Cu, and non-metal phthalocyanines with external structures of SARS-CoV-2 using docking and molecular dynamics. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-07396-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
81 Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022;:1-29. [PMID: 35196464 DOI: 10.1080/1040841X.2022.2035314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
82 Tavana B, Chen A. Determination of Drugs in Clinical Trials: Current Status and Outlook. Sensors (Basel) 2022;22:1592. [PMID: 35214505 DOI: 10.3390/s22041592] [Reference Citation Analysis]
83 Zhang X, Jin Y, Wang Y, Liang P, Zou M, Li S, Liu J, Qi X, Zhang X, Shang Z, Chen Y, Chen Q. Measurement of trace bisphenol A in drinking water with combination of immunochromatographic detection technology and SERS method. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120519. [PMID: 34801391 DOI: 10.1016/j.saa.2021.120519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
84 Rao H, Li J, Luo M, Zhang K, Gou H, Liu H, Xue Z. A label-free and modification-free ratiometric electrochemical strategy for enhanced natural enzyme detection using a bare electrode and nanozymes system. Anal Bioanal Chem 2022. [PMID: 35106612 DOI: 10.1007/s00216-022-03932-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Bhatia A, Nandhakumar P, Kim G, Lee NS, Yoon YH, Yang H. Simple and fast Ag deposition method using a redox enzyme label and quinone substrate for the sensitive electrochemical detection of thyroid-stimulating hormone. Biosens Bioelectron 2022;197:113773. [PMID: 34763152 DOI: 10.1016/j.bios.2021.113773] [Reference Citation Analysis]
86 Kilic T, Gessner I, Cho YK, Jeong N, Quintana J, Weissleder R, Lee H. Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing. Adv Mater 2022;34:e2107892. [PMID: 34890082 DOI: 10.1002/adma.202107892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
87 Fuller CW, Padayatti PS, Abderrahim H, Adamiak L, Alagar N, Ananthapadmanabhan N, Baek J, Chinni S, Choi C, Delaney KJ, Dubielzig R, Frkanec J, Garcia C, Gardner C, Gebhardt D, Geiser T, Gutierrez Z, Hall DA, Hodges AP, Hou G, Jain S, Jones T, Lobaton R, Majzik Z, Marte A, Mohan P, Mola P 2nd, Mudondo P, Mullinix J, Nguyen T, Ollinger F, Orr S, Ouyang Y, Pan P, Park N, Porras D, Prabhu K, Reese C, Ruel T, Sauerbrey T, Sawyer JR, Sinha P, Tu J, Venkatesh AG, VijayKumar S, Zheng L, Jin S, Tour JM, Church GM, Mola PW, Merriman B. Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc Natl Acad Sci U S A 2022;119:e2112812119. [PMID: 35074874 DOI: 10.1073/pnas.2112812119] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
88 Anzar N, Suleman S, Parvez S, Narang J. A review on Illicit drugs and biosensing advances for its rapid detection. Process Biochemistry 2022;113:113-24. [DOI: 10.1016/j.procbio.2021.12.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
89 Zhang L, Su W, Liu S, Huang C, Ghalandari B, Divsalar A, Ding X. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. Phenomics 2022;2:18-32. [DOI: 10.1007/s43657-021-00032-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
90 Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022;11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
91 Wang Y, Li B, Tian T, Liu Y, Zhang J, Qian K. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Tabata M, Miyahara Y. From new materials to advanced biomedical applications of solid-state biosensor: A review. Sensors and Actuators B: Chemical 2022;352:131033. [DOI: 10.1016/j.snb.2021.131033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Maqsood M, Naaz S, Bader Ul Ain H, Mushtaq Z, Nasir M, Qamar A. Evaluating the effect of Ginger Powder on Bilirubin, Creatinine, Urea and Uric Acid on Experimental Diabetic Wistar Rats in Randomized Control Trial. PBMJ 2022;5:351-355. [DOI: 10.54393/pbmj.v5i1.325] [Reference Citation Analysis]
94 Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. Lab Chip 2022. [PMID: 35048928 DOI: 10.1039/d1lc00665g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
95 Nicoliche CYN, Pascon AM, Bezerra ÍRS, de Castro ACH, Martos GR, Bettini J, Alves WA, Santhiago M, Lima RS. In Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Appl Mater Interfaces 2022;14:2522-33. [PMID: 34990106 DOI: 10.1021/acsami.1c18778] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
96 Garhnayak M, Mahapatra A, Garhnayak L, Rath S, Kumar Kar A. Biosensor as quick analytic tool in pandemic! Biosensors for Emerging and Re-Emerging Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-88464-8.00012-9] [Reference Citation Analysis]
97 Ko DH, Hosseini A, Karaosmanoglu H, Taredun K, Jones L, Partridge A. Microfluidic separation of capture from detection and its application for determination of COVID-19 antibodies. Sensors and Actuators B: Chemical 2022;351:130918. [DOI: 10.1016/j.snb.2021.130918] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
98 Lian M, Shi Y, Zhang W, Zhao J, Chen D. Nitrogen and sulfur co-doped Nb2C-MXene nanosheets for the ultrasensitive electrochemical detection dopamine under acidic conditions in gastric juice. Journal of Electroanalytical Chemistry 2022;904:115849. [DOI: 10.1016/j.jelechem.2021.115849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
99 Roberts A, Mahari S, Gandhi S. Biological/synthetic receptors (antibody, enzyme, and aptamer) used for biosensors development for virus detection. Advanced Biosensors for Virus Detection 2022. [DOI: 10.1016/b978-0-12-824494-4.00007-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Wu R, Feng Z, Zhang J, Jiang L, Zhu J. Quantum dots for electrochemical cytosensing. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
101 Misenan MSM, Akhlisah Z, Shaffie A, Saad MAM, Norrrahim M. Nanocellulose in sensors. Industrial Applications of Nanocellulose and Its Nanocomposites 2022. [DOI: 10.1016/b978-0-323-89909-3.00005-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Younis S, Zia R, Taj A, Rafiq A, Hayat H, Nayab N, Khan WS, Bajwa SZ. Role of functionalized metal oxide–carbon nanocomposites in biomolecule detection. Metal Oxide-Carbon Hybrid Materials 2022. [DOI: 10.1016/b978-0-12-822694-0.00016-8] [Reference Citation Analysis]
103 Guha Ray P, Saha B, Vaidya P, Bora H, Dixit K, Biswas A, Dhara S. Tailoring Multi-Functional 1D or 2D Nanomaterials: An Approach towards Engineering Futuristic Ultrasensitive Platforms for Rapid Detection of Microbial Strains. BioSensing, Theranostics, and Medical Devices 2022. [DOI: 10.1007/978-981-16-2782-8_10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Yu X, Li Y, Li Y, Liu S, Wu Z, Dong H, Xu Z, Li X, Liu Q. An electrochemical amplification strategy based on the ferrocene functionalized cuprous oxide superparticles for the detection of NSE. Talanta 2022;236:122865. [PMID: 34635247 DOI: 10.1016/j.talanta.2021.122865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
105 Addy R, Yadav A, Kumar M, Ali U, Anjali A, Garlapati VK, Bhadra S, Sevda S. Bioelectrochemical methods in biomolecular analysis. Nanobioanalytical Approaches to Medical Diagnostics 2022. [DOI: 10.1016/b978-0-323-85147-3.00011-6] [Reference Citation Analysis]
106 Ensafi AA, Saberi Z, Kazemifard N. Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00018-1] [Reference Citation Analysis]
107 Balamurugan K, Subramanian V. Interaction of amino acids, peptides, and proteins with two-dimensional carbon materials. Theoretical and Computational Chemistry 2022. [DOI: 10.1016/b978-0-12-819514-7.00004-x] [Reference Citation Analysis]
108 Saini A, Panwar D, Panesar PS, Chandra P. Potential of Nanotechnology in Food Analysis and Quality Improvement. Nanosensing and Bioanalytical Technologies in Food Quality Control 2022. [DOI: 10.1007/978-981-16-7029-9_8] [Reference Citation Analysis]
109 Padmalaya G, Krishna Kumar K, Senthil Kumar P, Sreeja BS, Bose S. A recent advancement on nanomaterials for electrochemical sensing of sulfamethaoxole and its futuristic approach. Chemosphere 2021;:133115. [PMID: 34952010 DOI: 10.1016/j.chemosphere.2021.133115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
110 Singh S, Kumar V, Anil AG, Kapoor D, Khasnabis S, Shekar S, Pavithra N, Samuel J, Subramanian S, Singh J, Ramamurthy PC. Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. J Environ Manage 2021;300:113569. [PMID: 34509810 DOI: 10.1016/j.jenvman.2021.113569] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
111 Weltin A, Kieninger J, Urban GA, Buchholz S, Arndt S, Rosskothen-Kuhl N. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosens Bioelectron 2021;199:113859. [PMID: 34911002 DOI: 10.1016/j.bios.2021.113859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
112 Ma T, Bizzotto D. Improved Thermal Stability and Homogeneity of Low Probe Density DNA SAMs Using Potential-Assisted Thiol-Exchange Assembly Methods. Anal Chem 2021;93:15973-81. [PMID: 34813297 DOI: 10.1021/acs.analchem.1c03353] [Reference Citation Analysis]
113 Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. Biosensors (Basel) 2021;11:502. [PMID: 34940259 DOI: 10.3390/bios11120502] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
114 Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
115 Dragan A, Parrilla M, Feier B, Oprean R, Cristea C, De Wael K. Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review. TrAC Trends in Analytical Chemistry 2021;145:116447. [DOI: 10.1016/j.trac.2021.116447] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
116 Mi X, Li H, Tan R, Feng B, Tu Y. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron 2021;192:113482. [PMID: 34256261 DOI: 10.1016/j.bios.2021.113482] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
117 Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. Environ Res 2021;:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
118 Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021;131:e148568. [PMID: 34491908 DOI: 10.1172/JCI148568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Lv S. Research fronts of Chemical Biology. Pure and Applied Chemistry 2021;93:1473-85. [DOI: 10.1515/pac-2020-1004] [Reference Citation Analysis]
120 Evtyugin GA, Porfir’eva AV. Determination of Organic Compounds in Aqueous–Organic and Dispersed Media Using Electrochemical Methods of Analysis. J Anal Chem 2021;76:1131-1143. [DOI: 10.1134/s1061934821100051] [Reference Citation Analysis]
121 Zhang Z, Ru S, Wang J, Wang D, Zhao L, Teng H, Dai Z, Zhang W, Yang A. Ultrasensitive label-free electrochemical immunosensors for detecting marine medaka (Oryzias melastigma) vitellogenin based on novel Cu2O–BSA nanoparticles and anti-lipovitellin monoclonal antibody. Sensors and Actuators B: Chemical 2021;345:130358. [DOI: 10.1016/j.snb.2021.130358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
122 Liang T, Jiang N, Zhou S, Wang X, Xu Y, Wu C, Kirsanov D, Legin A, Wan H, Wang P. Multiplexed all-solid-state ion-sensitive light-addressable potentiometric sensor (ISLAPS) system based on silicone-rubber for physiological ions detection. Anal Chim Acta 2021;1179:338603. [PMID: 34535249 DOI: 10.1016/j.aca.2021.338603] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
123 Del Real Mata C, Siavash Moakhar R, Hosseini II, Jalali M, Mahshid S. A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells. Nanoscale 2021;13:14316-29. [PMID: 34477715 DOI: 10.1039/d0nr07608b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
124 Daniel Thangadurai T, Manjubaashini N. Progressions in chemical and biological analytes sensing technology based on nanostructured materials: A comprehensive review. Materials Science and Engineering: B 2021;271:115307. [DOI: 10.1016/j.mseb.2021.115307] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft Wearable Healthcare Materials and Devices. Adv Healthc Mater 2021;10:e2100577. [PMID: 34019737 DOI: 10.1002/adhm.202100577] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
126 Machado MC, Zamani M, Daniel S, Furst AL. Bioelectrochemical platforms to study and detect emerging pathogens. MRS Bull 2021;:1-7. [PMID: 34483472 DOI: 10.1557/s43577-021-00172-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
127 Settu K, Chiu PT, Huang YM. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers (Basel) 2021;13:2795. [PMID: 34451332 DOI: 10.3390/polym13162795] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
128 Zhang QL, Wang LL, Liu Y, Lin J, Xu L. A kinetically controlled platform for ligand-oligonucleotide transduction. Nat Commun 2021;12:4654. [PMID: 34341342 DOI: 10.1038/s41467-021-24962-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Otero F, Shortall K, Salaj-kosla U, Tofail SA, Magner E. Electrochemical biosensor for the detection of a sequence of the TP53 gene using a methylene blue labelled DNA probe. Electrochimica Acta 2021;388:138642. [DOI: 10.1016/j.electacta.2021.138642] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
130 Wang X, Liao X, Mei L, Zhang M, Chen S, Qiao X, Hong C. An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sensors and Actuators B: Chemical 2021;341:130032. [DOI: 10.1016/j.snb.2021.130032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
131 Giordano GF, Freitas VMS, Schleder GR, Santhiago M, Gobbi AL, Lima RS. Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS Appl Mater Interfaces 2021;13:35914-23. [PMID: 34309352 DOI: 10.1021/acsami.1c07874] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
132 D’souza ES, Manjunatha JG, Raril C, Tigari G, Arpitha HJ, Shenoy S. Electro-Polymerized Titan Yellow Modified Carbon Paste Electrode for the Analysis of Curcumin. Surfaces 2021;4:191-204. [DOI: 10.3390/surfaces4030017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
133 Wettasinghe AP, Singh N, Starcher CL, DiTusa CC, Ishak-Boushaki Z, Kahanda D, McMullen R, Motea EA, Slinker JD. Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices. ACS Sens 2021;6:2622-9. [PMID: 34156840 DOI: 10.1021/acssensors.1c00365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Fan W, Liu X, Wu J, Liu Q, Ding L, Liu X. Development of a Novel Silver‐based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. Electroanalysis. [DOI: 10.1002/elan.202100254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Sánchez-Salcedo R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Dual electrochemical genosensor for early diagnosis of prostate cancer through lncRNAs detection. Biosens Bioelectron 2021;192:113520. [PMID: 34311209 DOI: 10.1016/j.bios.2021.113520] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
136 Fang C, Zhong C, Chen N, Yi L, Li J, Hu W. Reusable OIRD Microarray Chips Based on a Bienzyme-Immobilized Polyaniline Nanowire Forest for Multiplexed Detection of Biological Small Molecules. Anal Chem 2021;93:10697-703. [PMID: 34282896 DOI: 10.1021/acs.analchem.1c02274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
137 Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, Adam T, Anbu P. Silica and graphene mediate arsenic detection in mature rice grain by a newly patterned current-volt aptasensor. Sci Rep 2021;11:14688. [PMID: 34282233 DOI: 10.1038/s41598-021-94145-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
138 Yang XL, Zang RB, Shao R, Guan RF, Xie MH. Chiral UiO-MOFs based QCM sensors for enantioselective discrimination of hazardous biomolecule. J Hazard Mater 2021;413:125467. [PMID: 33930975 DOI: 10.1016/j.jhazmat.2021.125467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
139 Ferreira AL, de Lima LF, Moraes AS, Rubira RJ, Constantino CJ, Leite FL, Delgado-silva AO, Ferreira M. Development of a novel biosensor for Creatine Kinase (CK-MB) using Surface Plasmon Resonance (SPR). Applied Surface Science 2021;554:149565. [DOI: 10.1016/j.apsusc.2021.149565] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
140 Sun J, Ma Q, Xue D, Shan W, Liu R, Dong B, Zhang J, Wang Z, Shao B. Polymer/inorganic nanohybrids: An attractive materials for analysis and sensing. TrAC Trends in Analytical Chemistry 2021;140:116273. [DOI: 10.1016/j.trac.2021.116273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
141 Luo S, Zhang Y, Huang G, Situ B, Ye X, Tao M, Huang Y, Li B, Jiang X, Wang Q, Zheng L. An enzyme-free amplification strategy for sensitive assay of circulating tumor DNA based on wheel-like catalytic hairpin assembly and frame hybridization chain reaction. Sensors and Actuators B: Chemical 2021;338:129857. [DOI: 10.1016/j.snb.2021.129857] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
142 German N, Ramanaviciene A, Ramanavicius A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers (Basel) 2021;13:2173. [PMID: 34209068 DOI: 10.3390/polym13132173] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
143 Bracaglia S, Ranallo S, Plaxco KW, Ricci F. Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sens 2021;6:2442-8. [PMID: 34129321 DOI: 10.1021/acssensors.1c00790] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
144 Artigues M, Gilabert-Porres J, Texidó R, Borrós S, Abellà J, Colominas S. Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique. Sensors (Basel) 2021;21:4185. [PMID: 34207185 DOI: 10.3390/s21124185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
145 Cheng Y, Kargupta R, Ghoshal D, Li Z, Chande C, Feng L, Chatterjee S, Koratkar N, Motkuri RK, Basuray S. ESSENCE – A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosensors and Bioelectronics 2021;182:113163. [DOI: 10.1016/j.bios.2021.113163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
146 Wu Y, Arroyo-currás N. Advances in nucleic acid architectures for electrochemical sensing. Current Opinion in Electrochemistry 2021;27:100695. [DOI: 10.1016/j.coelec.2021.100695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
147 Li S, Li H, Li X, Zhu M, Li H, Xia F. Hybridization Chain Reaction-Amplified Electrochemical DNA-Based Sensors Enable Calibration-Free Measurements of Nucleic Acids Directly in Whole Blood. Anal Chem 2021;93:8354-61. [PMID: 34061504 DOI: 10.1021/acs.analchem.1c01436] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
148 Pollok NE, Peng Y, Rabin C, Richards I, Crooks RM. Effect of Serum on Electrochemical Detection of Bioassays Having Ag Nanoparticle Labels. ACS Sens 2021;6:1956-62. [PMID: 33885282 DOI: 10.1021/acssensors.1c00446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
149 Castle LM, Schuh DA, Reynolds EE, Furst AL. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens 2021;6:1717-30. [PMID: 33955227 DOI: 10.1021/acssensors.1c00481] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 21.0] [Reference Citation Analysis]
150 Moaaz EM, Mahmoud AM, Fayed AS, Rezk MR, Abdel‐moety EM. Determination of Tedizolid Phosphate Using Graphene Nanocomposite Based Solid Contact Ion Selective Electrode; Green Profile Assessment by Eco‐scale and GAPI Approach. Electroanalysis 2021;33:1895-901. [DOI: 10.1002/elan.202100067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
151 Jiaul Haque A, Kwon J, Kim J, Kim G, Lee N, Ho Yoon Y, Yang H. Sensitive and Low‐background Electrochemical Immunosensor Employing Glucose Dehydrogenase and 1,10‐Phenanthroline‐5,6‐dione. Electroanalysis 2021;33:1877-85. [DOI: 10.1002/elan.202100079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Forouzanfar S, Pala N, Madou M, Wang C. Perspectives on C-MEMS and C-NEMS biotech applications. Biosens Bioelectron 2021;180:113119. [PMID: 33711652 DOI: 10.1016/j.bios.2021.113119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
153 Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021;11:17301-19. [PMID: 34094508 DOI: 10.1039/d1ra00589h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
154 Ye K, Zhang M, Liu P, Liu B, Xu X, Li X, Zhu H, Wang L, Wang M, Niu X. Target-induced synergetic modulation of electrochemical tag concentration and electrode surface passivation for one-step sampling filtration-free detection of acid phosphatase activity. Talanta 2021;233:122500. [PMID: 34215117 DOI: 10.1016/j.talanta.2021.122500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
155 Wang W, Han R, Chen M, Luo X. Antifouling Peptide Hydrogel Based Electrochemical Biosensors for Highly Sensitive Detection of Cancer Biomarker HER2 in Human Serum. Anal Chem 2021;93:7355-61. [PMID: 33957042 DOI: 10.1021/acs.analchem.1c01350] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 24.0] [Reference Citation Analysis]
156 Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021;2:20200165. [DOI: 10.1002/viw.20200165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
157 Abdel-Haleem FM, Mahmoud S, Abdel-Ghani NET, El Nashar RM, Bechelany M, Barhoum A. Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors (Basel) 2021;21:3150. [PMID: 34062895 DOI: 10.3390/s21093150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
158 Bounegru AV, Apetrei C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int J Mol Sci 2021;22:4811. [PMID: 34062799 DOI: 10.3390/ijms22094811] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
159 Urban S, Deschner BJ, Trinkies LL, Kieninger J, Kraut M, Dittmeyer R, Urban GA, Weltin A. In Situ Mapping of H2, O2, and H2O2 in Microreactors: A Parallel, Selective Multianalyte Detection Method. ACS Sens 2021;6:1583-94. [PMID: 33481585 DOI: 10.1021/acssensors.0c02509] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
160 Abdel-Haleem FM, Gamal E, Rizk MS, Madbouly A, El Nashar RM, Anis B, Elnabawy HM, Khalil ASG, Barhoum A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front Bioeng Biotechnol 2021;9:648704. [PMID: 33898405 DOI: 10.3389/fbioe.2021.648704] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
161 Zhang Y, Wu Y, Wu Y, Chang Y, Liu M. CRISPR-Cas systems: From gene scissors to programmable biosensors. TrAC Trends in Analytical Chemistry 2021;137:116210. [DOI: 10.1016/j.trac.2021.116210] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
162 Song D, Zheng J, Myung NV, Xu J, Zhang M. Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 2021;225:122006. [DOI: 10.1016/j.talanta.2020.122006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
163 Liu P, Du H, Chen Y, Wang H, Mao J, Zhang L, Tao J, Zhu J. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J Mater Chem B 2020;8:2032-9. [PMID: 32049084 DOI: 10.1039/c9tb02837d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
164 Clifford A, Das J, Yousefi H, Mahmud A, Chen JB, Kelley SO. Strategies for Biomolecular Analysis and Continuous Physiological Monitoring. J Am Chem Soc 2021;143:5281-94. [PMID: 33793215 DOI: 10.1021/jacs.0c13138] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 26.0] [Reference Citation Analysis]
165 Li S, Wang Y, Zhang Z, Wang Y, Li H, Xia F. Exploring End-Group Effect of Alkanethiol Self-Assembled Monolayers on Electrochemical Aptamer-Based Sensors in Biological Fluids. Anal Chem 2021;93:5849-55. [PMID: 33787229 DOI: 10.1021/acs.analchem.1c00085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
166 Krishnan RG, Saraswathyamma B. Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. Anal Bioanal Chem 2021. [PMID: 33774711 DOI: 10.1007/s00216-021-03282-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
167 Peng Y, Rabin C, Walgama CT, Pollok NE, Smith L, Richards I, Crooks RM. Silver Nanocubes as Electrochemical Labels for Bioassays. ACS Sens 2021;6:1111-9. [PMID: 33439628 DOI: 10.1021/acssensors.0c02377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
168 Feyzi-Barnaji B, Dinarvand R, Salehzadeh H, Arkan E, Salimi A, Nili F, Mohammadi A. Construction of a ternary nano-architecture based graphene oxide sheets, toward electrocatalytic determination of tumor-associated anti-p53 autoantibodies in human serum. Talanta 2021;230:122276. [PMID: 33934760 DOI: 10.1016/j.talanta.2021.122276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
169 Madurani KA, Suprapto S, Syahputra MY, Puspita I, Masudi A, Rizqi HD, Hatta AM, Juniastuti J, Lusida MI, Kurniawan F. Review—Recent Development of Detection Methods for Controlling COVID-19 Outbreak. J Electrochem Soc 2021;168:037511. [DOI: 10.1149/1945-7111/abe9cc] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
170 Tigari G, Manjunatha JG, D'souza ES, Sreeharsha N. Surfactant and Polymer Composite Modified Electrode for the Sensitive Determination of Vanillin in Food Sample. ChemistrySelect 2021;6:2700-8. [DOI: 10.1002/slct.202004370] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
171 Aiello D, Carnamucio F, Cordaro M, Foti C, Napoli A, Giuffrè O. Ca2+ Complexation With Relevant Bioligands in Aqueous Solution: A Speciation Study With Implications for Biological Fluids. Front Chem 2021;9:640219. [PMID: 33718329 DOI: 10.3389/fchem.2021.640219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
172 Song F, Wang C, Wang C, Gao J, Liu H, Zhang Y, Han L. Enrichment-Detection Integrated Exosome Profiling Biosensors Promising for Early Diagnosis of Cancer. Anal Chem 2021;93:4697-706. [DOI: 10.1021/acs.analchem.0c05245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
173 Liu H, Zheng W, Zhao Y, Zhou Y. Plasmon-Enhanced Electroactivity of AuRu Nanostructures for Electroanalysis Applications. Anal Chem 2021;93:4944-51. [PMID: 33705112 DOI: 10.1021/acs.analchem.0c05439] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
174 Luo F, Chen F, Xiong Y, Wu Z, Zhang X, Wen W, Wang S. Single-Particle Electrochemical Biosensor with DNA Walker Amplification for Ultrasensitive HIV-DNA Counting. Anal Chem 2021;93:4506-12. [PMID: 33677958 DOI: 10.1021/acs.analchem.0c04861] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
175 Shaabani N, Chan NWC, Jemere AB. A Molecularly Imprinted Sol-Gel Electrochemical Sensor for Naloxone Determination. Nanomaterials (Basel) 2021;11:631. [PMID: 33802590 DOI: 10.3390/nano11030631] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
176 Liu M, Lao J, Wang H, Xu Z, Li J, Wen L, Yin Z, Luo C, Peng H. Electrochemical Determination of Tyrosine Using Graphene and Gold Nanoparticle Composite Modified Glassy Carbon Electrode. Russ J Electrochem 2021;57:41-50. [DOI: 10.1134/s1023193520110063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
177 Bai J, Chen X, Yuan G, Zhang L, Huang Z, Ren L. A Novel Nitrogen-Doped Dual-Emission Carbon Dots as an Effective Fluorescent Probe for Ratiometric Detection Dopamine. NANO 2021;16:2150030. [DOI: 10.1142/s1793292021500302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
178 Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Mater Today Chem 2021;20:100443. [PMID: 33615086 DOI: 10.1016/j.mtchem.2021.100443] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
179 Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021;41:2039-108. [PMID: 33559917 DOI: 10.1002/med.21786] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
180 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 98.0] [Reference Citation Analysis]
181 Zuccarello L, Barbosa C, Todorovic S, Silveira CM. Electrocatalysis by Heme Enzymes—Applications in Biosensing. Catalysts 2021;11:218. [DOI: 10.3390/catal11020218] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
182 Fu C, Sun Y, Huang C, Wang F, Li N, Zhang L, Ge S, Yu J. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection. Talanta 2021;223:121719. [DOI: 10.1016/j.talanta.2020.121719] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
183 Liu C, Wei X, Wang X, Shi J, Chen Z, Zhang H, Zhang W, Zou X. Ratiometric electrochemical analysis on a flexibly-fabricated vibratory electrode module for reliable and selective determination of imidacloprid. Sensors and Actuators B: Chemical 2021;329:129228. [DOI: 10.1016/j.snb.2020.129228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
184 Tortorella S, Cinti S. How Can Chemometrics Support the Development of Point of Need Devices? Anal Chem 2021;93:2713-22. [DOI: 10.1021/acs.analchem.0c04151] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
185 [DOI: 10.1109/mems51782.2021.9375360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. Sensors (Basel) 2021;21:736. [PMID: 33499136 DOI: 10.3390/s21030736] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
187 Rathinaraj Benjamin S, de Lima F. Current and Prospective of Breast Cancer Biomarkers. Molecular Biotechnology 2021. [DOI: 10.5772/intechopen.91151] [Reference Citation Analysis]
188 Liu Y, Canoura J, Alkhamis O, Xiao Y. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors. ACS Appl Mater Interfaces 2021;13:9491-9. [PMID: 33448791 DOI: 10.1021/acsami.0c20707] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 19.0] [Reference Citation Analysis]
189 Dăscălescu D, Apetrei C. Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review. Chemosensors 2021;9:14. [DOI: 10.3390/chemosensors9010014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
190 Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv Fiber Mater 2021;3:47-58. [DOI: 10.1007/s42765-020-00061-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
191 Yin B, Zhai HL, Zhao BQ, Bi KX, Mi JY. Chemometrics-assisted simultaneous voltammetric determination of multiple neurotransmitters in human serum. Bioelectrochemistry 2021;139:107739. [PMID: 33485156 DOI: 10.1016/j.bioelechem.2021.107739] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
192 Barek J. How to Improve the Performance of Electrochemical Sensors via Minimization of Electrode Passivation. Chemosensors 2021;9:12. [DOI: 10.3390/chemosensors9010012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
193 Liu B, Yang L, Wang G, He S, Wang X, Ye L. A simple method to construct a low-cost immunosensor based on a dithiol-functionalized polydopamine platform. New J Chem 2021;45:3940-6. [DOI: 10.1039/d0nj06241c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Aydın EB, Aydın M, Sezgintürk MK. Immunosensors Based on the Technology of Molecular Imprinted Polymers. Molecular Imprinting for Nanosensors and Other Sensing Applications 2021. [DOI: 10.1016/b978-0-12-822117-4.00006-x] [Reference Citation Analysis]
195 Opoku F, Govender PP. Prospective of functionalized nanomaterials in environmental science: A nanotechnological approach. Functionalized Nanomaterials Based Devices for Environmental Applications 2021. [DOI: 10.1016/b978-0-12-822245-4.00002-7] [Reference Citation Analysis]
196 Tabata M, Kataoka-hamai C, Nogami K, Tsuya D, Goda T, Matsumoto A, Miyahara Y. Organic and inorganic mixed phase modification of a silver surface for functionalization with biomolecules and stabilization of electromotive force. RSC Adv 2021;11:24958-24967. [DOI: 10.1039/d1ra03449a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Nugraha AS, Jang HW, Yamauchi Y, Shokouhimehr M. Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 2021;9:8195-220. [DOI: 10.1039/d0ta08344e] [Cited by in Crossref: 61] [Cited by in F6Publishing: 69] [Article Influence: 61.0] [Reference Citation Analysis]
198 Kar S, Sangem P, Anusha N, Senthilkumaran B. Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. Aquaculture and Fisheries 2021;6:1-26. [DOI: 10.1016/j.aaf.2020.07.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
199 Teodoro KBR, Migliorini FL, Facure MHM, Sanfelice RC, Martins D, Correa DS. Novel Chemical Based on Green Composite Materials for. Nanosensors for Environment, Food and Agriculture Vol. 1 2021. [DOI: 10.1007/978-3-030-63245-8_5] [Reference Citation Analysis]
200 Gandhi M, Chen S, Ray SS, Jaiswal NK, Ranjan S. Phyto-Nanosensors: Advancement of Phytochemicals as an Electrochemical Platform for Various Biomedical Applications. Environmental Nanotechnology Volume 5 2021. [DOI: 10.1007/978-3-030-73010-9_9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Huang X, Wu N, Liu W, Shang Y, Liu H, He Y, Meng H, Dong Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. New J Chem 2021;45:10880-10889. [DOI: 10.1039/d1nj01282g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
202 Ye C, Liang D, Ruan Y, Lin X, Yu Y, Nan R, Yi Y, Sun W. Photonic crystal barcode: An emerging tool for cancer diagnosis. Smart Materials in Medicine 2021;2:182-95. [DOI: 10.1016/j.smaim.2021.06.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
203 Saylan Y, Yılmaz F, Denizli A. Nanobiosensors for Biomedical Applications. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-64410-9_8] [Reference Citation Analysis]
204 Jia Y, Zhang J, Fan Q. A disposable DNA methylation sensor based on the printable graphene field effect transistor. E3S Web Conf 2021;271:04045. [DOI: 10.1051/e3sconf/202127104045] [Reference Citation Analysis]
205 Hu Y, Hojamberdiev M, Geng D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J Mater Chem C 2021;9:6970-90. [DOI: 10.1039/d1tc01053k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
206 Buleandră M, Popa DE, David IG, Ciucu AA. A simple and efficient cyclic square wave voltammetric method for simultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchemical Journal 2021;160:105621. [DOI: 10.1016/j.microc.2020.105621] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
207 Rashed MA, Harraz FA, Faisal M, El-Toni AM, Alsaiari M, Al-Assiri MS. Gold nanoparticles plated porous silicon nanopowder for nonenzymatic voltammetric detection of hydrogen peroxide. Anal Biochem 2021;615:114065. [PMID: 33321107 DOI: 10.1016/j.ab.2020.114065] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
208 Yu H, Chen Z, Liu Y, Alkhamis O, Song Z, Xiao Y. Fabrication of Aptamer-Modified Paper Electrochemical Devices for On-Site Biosensing. Angew Chem Int Ed Engl 2021;60:2993-3000. [PMID: 33152145 DOI: 10.1002/anie.202008231] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
209 Yu H, Chen Z, Liu Y, Alkhamis O, Song Z, Xiao Y. Fabrication of Aptamer‐Modified Paper Electrochemical Devices for On‐Site Biosensing. Angew Chem 2021;133:3030-7. [DOI: 10.1002/ange.202008231] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
210 Ma T, Martens I, Bizzotto D. Thermal Stability of Thiolated DNA SAMs in Buffer: Revealing the Influence of Surface Crystallography and DNA Coverage via In Situ Combinatorial Surface Analysis. Langmuir 2020;36:14495-506. [PMID: 33231463 DOI: 10.1021/acs.langmuir.0c01828] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
211 Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020;21:E9275. [PMID: 33291758 DOI: 10.3390/ijms21239275] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
212 Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia J, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Analytical Biochemistry 2020;610:113996. [DOI: 10.1016/j.ab.2020.113996] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
213 Xu S, Xue J, Bai Y, Liu H. High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry. Anal Chem 2020;92:15854-61. [DOI: 10.1021/acs.analchem.0c03167] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
214 Kumar N, Arora A, Krishnan A. Complementary AC Voltammetry—A Method for Simultaneous Measurement of Faradaic and Nonfaradaic Currents in an Electrochemically Reversible System. IEEE Sensors J 2020;20:13196-13203. [DOI: 10.1109/jsen.2020.3004426] [Reference Citation Analysis]
215 Ahmadi S, Fini H, Ho T, Nadoushan PJ, Kraatz H, Kerman K. Development of an Electrochemical Sensor Using Pencil Graphite Electrode for Monitoring UV-Induced DNA Damage. J Chem Educ 2020;97:4445-52. [DOI: 10.1021/acs.jchemed.9b01065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
216 Zhu Q, Yang H, Luo J, Huang H, Fang L, Deng J, Li C, Li Y, Zeng T, Zheng J. 3D matrixed DNA self-nanocatalyzer as electrochemical sensitizers for ultrasensitive investigation of DNA 5-methylcytosine. Anal Chim Acta 2021;1142:127-34. [PMID: 33280690 DOI: 10.1016/j.aca.2020.10.064] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
217 Tigari G, Manjunatha JG. Poly(glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach. Monatsh Chem 2020;151:1681-8. [DOI: 10.1007/s00706-020-02700-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
218 Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. CMC 2020;27:6159-87. [DOI: 10.2174/0929867326666190903161750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
219 Masud MK, Na J, Lin T, Malgras V, Preet A, Ibn Sina AA, Wood K, Billah M, Kim J, You J, Kani K, Whitten AE, Salomon C, Nguyen N, Shiddiky MJ, Trau M, Hossain MSA, Yamauchi Y. Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics 2020;168:112429. [DOI: 10.1016/j.bios.2020.112429] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
220 de Sá M, Brandão L. Non-enzymatic direct glucose fuel cells (DGFC): A novel principle towards autonomous electrochemical biosensors. International Journal of Hydrogen Energy 2020;45:29749-62. [DOI: 10.1016/j.ijhydene.2019.09.105] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
221 Dhanjai, Yu N, Mugo SM. Disposable Capacitive Biosensor for Dopamine Sensing. ChemistrySelect 2020;5:12470-6. [DOI: 10.1002/slct.202002865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
222 Adamson H, Jeuken LJC. Engineering Protein Switches for Rapid Diagnostic Tests. ACS Sens 2020;5:3001-12. [PMID: 33052043 DOI: 10.1021/acssensors.0c01831] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
223 Yan K, Nandhakumar P, Bhatia A, Lee NS, Yoon YH, Yang H. Electrochemical immunoassay based on choline oxidase-peroxidase enzymatic cascade. Biosens Bioelectron 2021;171:112727. [PMID: 33069956 DOI: 10.1016/j.bios.2020.112727] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
224 Huang S, Tang R, Zhang T, Zhao J, Jiang Z, Wang Q. Anti-fouling poly adenine coating combined with highly specific CD20 epitope mimetic peptide for rituximab detection in clinical patients' plasma. Biosens Bioelectron 2021;171:112678. [PMID: 33113382 DOI: 10.1016/j.bios.2020.112678] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
225 Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Rajabzadeh AR. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends in Analytical Chemistry 2020;131:116006. [DOI: 10.1016/j.trac.2020.116006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
226 Yan K, Haque AJ, Nandhakumar P, Bhatia A, Lee N, Yoon YH, Yang H. Boosting electrochemical immunosensing performance by employing acetaminophen as a peroxidase substrate. Biosensors and Bioelectronics 2020;165:112337. [DOI: 10.1016/j.bios.2020.112337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
227 Soda N, Umer M, Kasetsirikul S, Salomon C, Kline R, Nguyen N, Rehm BH, Shiddiky MJ. An amplification-free method for the detection of HOTAIR long non-coding RNA. Analytica Chimica Acta 2020;1132:66-73. [DOI: 10.1016/j.aca.2020.07.038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
228 Mahshid SS, Dabdoub A. Development of a novel electrochemical immuno-biosensor for circulating biomarkers of the inner ear. Biosens Bioelectron 2020;165:112369. [PMID: 32729501 DOI: 10.1016/j.bios.2020.112369] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
229 Zhao Y, Xu C. DNA-Based Plasmonic Heterogeneous Nanostructures: Building, Optical Responses, and Bioapplications. Adv Mater 2020;32:e1907880. [PMID: 32596873 DOI: 10.1002/adma.201907880] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
230 Mukherjee A, Ashrafi AM, Svec P, Richtera L, Přibyl J, Brtnický M, Kynicky J, Adam V. The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles. Applied Sciences 2020;10:6756. [DOI: 10.3390/app10196756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
231 Elsayed GM, El Mously DA, Mostafa NM, Hassan NY, Mahmoud AM. Neostigmine Potentiometric Sensors Based on Microfabricated Copper Electrodes Using Poly(3-octylthiophene) as an Ion-to-Electron Transducer Layer. J Electrochem Soc 2020;167:137506. [DOI: 10.1149/1945-7111/abb8f6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
232 Tigari G, Manjunatha JG. Optimized Voltammetric Experiment for the Determination of Phloroglucinol at Surfactant Modified Carbon Nanotube Paste Electrode. Instrum Exp Tech 2020;63:750-7. [DOI: 10.1134/s0020441220050139] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
233 Zribi R, Neri G. Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules. Sensors (Basel) 2020;20:E5404. [PMID: 32967188 DOI: 10.3390/s20185404] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
234 Li S, Li C, Wang Y, Li H, Xia F. Re-engineering Electrochemical Aptamer-Based Biosensors to Tune Their Useful Dynamic Range via Distal-Site Mutation and Allosteric Inhibition. Anal Chem 2020;92:13427-33. [PMID: 32872766 DOI: 10.1021/acs.analchem.0c02782] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
235 Gallo V, Lai A, Pasquo A, Almaviva S, Iacobelli S, Persichetti L, Capellini G, Antonini G. Surface-enhanced Raman scattering (SERS)-based immunosystem for ultrasensitive detection of the 90K biomarker. Anal Bioanal Chem 2020;412:7659-67. [PMID: 32875368 DOI: 10.1007/s00216-020-02903-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
236 Redón P, Shahzad A, Iqbal T, Wijns W. Benefits of Home-Based Solutions for Diagnosis and Treatment of Acute Coronary Syndromes on Health Care Costs: A Systematic Review. Sensors (Basel) 2020;20:E5006. [PMID: 32899338 DOI: 10.3390/s20175006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
237 Yu Z, Cui P, Xiang Y, Li B, Han X, Shi W, Yan H, Zhang G. Developing a fast electrochemical aptasensor method for the quantitative detection of penicillin G residue in milk with high sensitivity and good anti-fouling ability. Microchemical Journal 2020;157:105077. [DOI: 10.1016/j.microc.2020.105077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
238 Goda T, Miyahara Y. Label-Free Monitoring of Histone Acetylation Using Aptamer-Functionalized Field-Effect Transistor and Quartz Crystal Microbalance Sensors. Micromachines (Basel) 2020;11:E820. [PMID: 32872429 DOI: 10.3390/mi11090820] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
239 Choi YM, Lim H, Lee HN, Park YM, Park JS, Kim HJ. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors (Basel) 2020;10:E111. [PMID: 32872302 DOI: 10.3390/bios10090111] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
240 Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, Li L, Li R, Deng Y, Ding H, Lv G, Zhao G, Liu L, Zou G, Feng M, Sun Q, Yin L, Sheng X. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst Nanoeng 2020;6:64. [PMID: 34567675 DOI: 10.1038/s41378-020-0176-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
241 Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK. 2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. Micromachines (Basel) 2020;11:E779. [PMID: 32824184 DOI: 10.3390/mi11080779] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
242 Mandour AA, Nabil N, Zaazaa HE, Abdelkawy M. Review on analytical studies of some pharmaceutical compounds containing heterocyclic rings: brinzolamide, timolol maleate, flumethasone pivalate, and clioquinol. Futur J Pharm Sci 2020;6. [DOI: 10.1186/s43094-020-00068-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
243 Wang C, Zhao Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens Bioelectron 2020;167:112478. [PMID: 32810704 DOI: 10.1016/j.bios.2020.112478] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 18.0] [Reference Citation Analysis]
244 Liang H, Liu H, Tian B, Ma R, Wang Y. Carbon quantum Dot@Silver nanocomposite-based fluorescent imaging of intracellular superoxide anion. Mikrochim Acta 2020;187:484. [PMID: 32757083 DOI: 10.1007/s00604-020-04359-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
245 Zhang Y, Figueroa-Miranda G, Wu C, Willbold D, Offenhäusser A, Mayer D. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale 2020;12:16501-13. [PMID: 32729601 DOI: 10.1039/d0nr03421e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
246 Schram J, Parrilla M, Sleegers N, Samyn N, Bijvoets SM, Heerschop MWJ, van Nuijs ALN, De Wael K. Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples. Anal Chem 2020;92:13485-92. [DOI: 10.1021/acs.analchem.0c02810] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
247 Ji T, Liu Z, Wang G, Guo X, Akbar Khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q. Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 2020;166:112455. [PMID: 32739797 DOI: 10.1016/j.bios.2020.112455] [Cited by in Crossref: 207] [Cited by in F6Publishing: 220] [Article Influence: 103.5] [Reference Citation Analysis]
248 Mao X, Mao D, Chen T, Jalalah M, Al-assiri MS, Harraz FA, Zhu X, Li G. DNA Hydrogel-Based Three-Dimensional Electron Transporter and Its Application in Electrochemical Biosensing. ACS Appl Mater Interfaces 2020;12:36851-9. [DOI: 10.1021/acsami.0c08064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
249 Wu X, Feng J, Deng J, Cui Z, Wang L, Xie S, Chen C, Tang C, Han Z, Yu H, Sun X, Peng H. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci China Chem 2020;63:1281-8. [DOI: 10.1007/s11426-020-9779-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
250 Umapathi S, Masud J, Coleman H, Nath M. Electrochemical sensor based on CuSe for determination of dopamine. Mikrochim Acta 2020;187:440. [PMID: 32653955 DOI: 10.1007/s00604-020-04405-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
251 Peng H, Zhang J, Zeng C, Zhou C, Li Q, Lu N, Wang L. One-Dimensional Synergistic Core–Shell Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive Colorimetric Detection of Blood Cholesterol. ACS Appl Bio Mater 2020;3:5111-9. [DOI: 10.1021/acsabm.0c00588] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
252 Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv Sci (Weinh) 2020;7:1902980. [PMID: 32670744 DOI: 10.1002/advs.201902980] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
253 Lin M, Yi X, Wan H, Zhang J, Huang F, Xia F. Photoresponsive Electrochemical DNA Biosensors Achieving Various Dynamic Ranges by Using Only-One Capture Probe. Anal Chem 2020;92:9963-70. [DOI: 10.1021/acs.analchem.0c01571] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
254 Otero F, Magner E. Biosensors-Recent Advances and Future Challenges in Electrode Materials. Sensors (Basel) 2020;20:E3561. [PMID: 32586032 DOI: 10.3390/s20123561] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
255 Yan YH, Zhang DY, Wu LR. Encoding multiple digital DNA signals in a single analog channel. Nucleic Acids Res 2020;48:e65. [PMID: 32338742 DOI: 10.1093/nar/gkaa303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Bounegru AV, Apetrei C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020;10:680. [DOI: 10.3390/catal10060680] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
257 Arshavsky-Graham S, Urmann K, Salama R, Massad-Ivanir N, Walter JG, Scheper T, Segal E. Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 2020;145:4991-5003. [PMID: 32519701 DOI: 10.1039/d0an00178c] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 20.5] [Reference Citation Analysis]
258 Cai X, Lv F, Lai G, Fu L, Lin CT, Yu A. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. Mikrochim Acta 2020;187:361. [PMID: 32468206 DOI: 10.1007/s00604-020-04342-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
259 Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020;6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
260 Song Y, Xu T, Zhu Q, Zhang X. Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer's biomarkers. Biosens Bioelectron 2020;162:112253. [PMID: 32392158 DOI: 10.1016/j.bios.2020.112253] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
261 Ribeiro JA, Silva E, Moreira PS, Pereira CM. Electrochemical Characterization of Redox Probes at Gold Screen‐Printed Electrodes: Efforts towards Signal Stability. ChemistrySelect 2020;5:5041-8. [DOI: 10.1002/slct.202001411] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
262 Xu W, Jin T, Dai Y, Liu CC. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosensors and Bioelectronics 2020;155:112100. [DOI: 10.1016/j.bios.2020.112100] [Cited by in Crossref: 68] [Cited by in F6Publishing: 73] [Article Influence: 34.0] [Reference Citation Analysis]
263 Mhd Akhir MA, Parmin NA, Hashim U, Gopinath SC, Rejali Z, Afzan A, Uda M, Uda M, Hong V. Voltammetric DNA Biosensor for Human Papillomavirus (HPV) Strain 18 Detection. IOP Conf Ser : Mater Sci Eng 2020;864:012166. [DOI: 10.1088/1757-899x/864/1/012166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
264 Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines (Basel) 2020;11:E411. [PMID: 32295170 DOI: 10.3390/mi11040411] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
265 Zhang K, Xiong T, Wu F, Yue Q, Ji W, Yu P, Mao L. Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Sci China Chem 2020;63:1004-11. [DOI: 10.1007/s11426-020-9715-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
266 Freitas M, Nouws HP, Keating E, Delerue-matos C. High-performance electrochemical immunomagnetic assay for breast cancer analysis. Sensors and Actuators B: Chemical 2020;308:127667. [DOI: 10.1016/j.snb.2020.127667] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
267 Ma W, Xu S, Liu H, Bai Y. Mass Spectrometry Methods for In Situ Analysis of Clinical Biomolecules. Small Methods 2020;4:1900407. [DOI: 10.1002/smtd.201900407] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
268 Joshi A, Kim K. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosensors and Bioelectronics 2020;153:112046. [DOI: 10.1016/j.bios.2020.112046] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 40.0] [Reference Citation Analysis]
269 Oliveira S, Luzardo J, Silva L, Aguiar D, Senna C, Verdan R, Kuznetsov A, Vasconcelos T, Archanjo B, Achete C, D'elia E, Araujo J. High-performance electrochemical sensor based on molecularly imprinted polypyrrole-graphene modified glassy carbon electrode. Thin Solid Films 2020;699:137875. [DOI: 10.1016/j.tsf.2020.137875] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
270 Pollok NE, Rabin C, Walgama CT, Smith L, Richards I, Crooks RM. Electrochemical Detection of NT-proBNP Using a Metalloimmunoassay on a Paper Electrode Platform. ACS Sens 2020;5:853-60. [PMID: 32154707 DOI: 10.1021/acssensors.0c00167] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
271 Martín Várguez PE, Brunel F, Raimundo JM. Recent Electrochemical/Electrical Microfabricated Sensor Devices for Ionic and Polyionic Analytes. ACS Omega 2020;5:4733-42. [PMID: 32201758 DOI: 10.1021/acsomega.9b04331] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
272 Cadoni E, Manicardi A, Madder A. PNA-Based MicroRNA Detection Methodologies. Molecules 2020;25:E1296. [PMID: 32178411 DOI: 10.3390/molecules25061296] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
273 Deng L, Lai G, Fu L, Lin CT, Yu A. Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen. Analyst 2020;145:3073-80. [PMID: 32142088 DOI: 10.1039/c9an02633a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
274 Luo F, Li Z, Dai G, Lu Y, He P, Wang Q. Simultaneous detection of different bacteria by microchip electrophoresis combined with universal primer-duplex polymerase chain reaction. Journal of Chromatography A 2020;1615:460734. [DOI: 10.1016/j.chroma.2019.460734] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
275 Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv Mater 2020;32:e1903862. [PMID: 31944430 DOI: 10.1002/adma.201903862] [Cited by in Crossref: 104] [Cited by in F6Publishing: 105] [Article Influence: 52.0] [Reference Citation Analysis]
276 Tigari G, Manjunatha J. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. Journal of Science: Advanced Materials and Devices 2020;5:56-64. [DOI: 10.1016/j.jsamd.2019.11.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
277 Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, Li L, Li R, Deng Y, Ding H, Lv G, Zhao G, Liu L, Zou G, Feng M, Sun Q, Yin L, Sheng X. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection.. [DOI: 10.1101/2020.02.02.926782] [Reference Citation Analysis]
278 de Fatima Ulbrich K, Winiarski JP, Jost CL, Maduro de Campos CE. Mechanochemical synthesis of a Ni3-xTe2 nanocrystalline composite and its application for simultaneous electrochemical detection of dopamine and adrenaline. Composites Part B: Engineering 2020;183:107649. [DOI: 10.1016/j.compositesb.2019.107649] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
279 Song Y, Xu T, Xiu J, Zhang X. Mini-pillar microarray for individually electrochemical sensing in microdroplets. Biosensors and Bioelectronics 2020;149:111845. [DOI: 10.1016/j.bios.2019.111845] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
280 Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosensors and Bioelectronics 2020;149:111842. [DOI: 10.1016/j.bios.2019.111842] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
281 Wang F, Fu C, Huang C, Li N, Wang Y, Ge S, Yu J. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosensors and Bioelectronics 2020;150:111917. [DOI: 10.1016/j.bios.2019.111917] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 18.5] [Reference Citation Analysis]
282 Ge L, Li S, Lisak G. Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 2020;179:112913. [DOI: 10.1016/j.jpba.2019.112913] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
283 Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020;12:3535-59. [PMID: 32003390 DOI: 10.1039/c9nr10178k] [Cited by in Crossref: 187] [Cited by in F6Publishing: 203] [Article Influence: 93.5] [Reference Citation Analysis]
284 Triroj N, Saensak R, Porntheeraphat S, Paosawatyanyong B, Amornkitbamrung V. Diamond-Like Carbon Thin Film Electrodes for Microfluidic Bioelectrochemical Sensing Platforms. Anal Chem 2020;92:3650-7. [DOI: 10.1021/acs.analchem.9b04689] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
285 Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, Lin JS. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng 2020;14:1. [PMID: 31956340 DOI: 10.1186/s13036-019-0223-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
286 Ho M, Liu W, Tseng H, Yeh Y, Tseng W, Chou Y, Huang X, Hsu H, Ho L, Pan S. Quantitative determination of leukocyte esterase with a paper-based device. RSC Adv 2020;10:27042-9. [DOI: 10.1039/d0ra03306e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
287 Arfin T. Functional graphene-based nanodevices: emerging diagnostic tool. Nanomaterials in Diagnostic Tools and Devices 2020. [DOI: 10.1016/b978-0-12-817923-9.00003-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
288 Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim Y, Salomon C, Shiddiky MJA. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020;145:2038-57. [DOI: 10.1039/c9an02263e] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
289 Hosu O, Tertiş M, Cernat A, Feier B, Săndulescu R. Recent approaches to the synthesis of smart nanomaterials for nanodevices in disease diagnosis. Nanomaterials in Diagnostic Tools and Devices 2020. [DOI: 10.1016/b978-0-12-817923-9.00001-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
290 Wahyuni WT, Putra BR, Marken F. Voltammetric detection of vitamin B1 (thiamine) in neutral solution at a glassy carbon electrode via in situ pH modulation. Analyst 2020;145:1903-9. [DOI: 10.1039/c9an02186h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
291 Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. Sensors International 2020;1:100047. [DOI: 10.1016/j.sintl.2020.100047] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
292 Islam MN, Channon RB. Electrochemical sensors. Bioengineering Innovative Solutions for Cancer 2020. [DOI: 10.1016/b978-0-12-813886-1.00004-8] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
293 Liu Z, Xia X, Zhou G, Ge L, Li F. Acetylcholinesterase-catalyzed silver deposition for ultrasensitive electrochemical biosensing of organophosphorus pesticides. Analyst 2020;145:2339-44. [DOI: 10.1039/c9an02546d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
294 Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020;10:19309-36. [DOI: 10.1039/d0ra01084g] [Cited by in Crossref: 97] [Cited by in F6Publishing: 103] [Article Influence: 48.5] [Reference Citation Analysis]
295 Chen C, Guo Y, Chen P, Peng H. Recent advances of tissue-interfaced chemical biosensors. J Mater Chem B 2020;8:3371-81. [DOI: 10.1039/c9tb02476j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
296 Maduraiveeran G. Bionanomaterial-based electrochemical biosensing platforms for biomedical applications. Anal Methods 2020;12:1688-701. [DOI: 10.1039/d0ay00171f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
297 Hu Q, Gan S, Bao Y, Zhang Y, Han D, Niu L. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing. J Mater Chem B 2020;8:3327-40. [DOI: 10.1039/c9tb02419k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
298 Fu J, Dong H, Zhao Q, Cheng S, Guo Y, Sun X. Fabrication of refreshable aptasensor based on hydrophobic screen-printed carbon electrode interface. Sci Total Environ 2020;712:136410. [PMID: 32050375 DOI: 10.1016/j.scitotenv.2019.136410] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
299 Ciftci S, Cánovas R, Neumann F, Paulraj T, Nilsson M, Crespo GA, Madaboosi N. The sweet detection of rolling circle amplification: Glucose-based electrochemical genosensor for the detection of viral nucleic acid. Biosens Bioelectron 2020;151:112002. [PMID: 31999596 DOI: 10.1016/j.bios.2019.112002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
300 Cinti S, Cinotti G, Parolo C, Nguyen EP, Caratelli V, Moscone D, Arduini F, Merkoci A. Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Anal Chem 2020;92:1674-9. [DOI: 10.1021/acs.analchem.9b02560] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 10.3] [Reference Citation Analysis]
301 Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, Lu Y. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J Am Chem Soc 2020;142:207-13. [PMID: 31800219 DOI: 10.1021/jacs.9b09211] [Cited by in Crossref: 213] [Cited by in F6Publishing: 186] [Article Influence: 71.0] [Reference Citation Analysis]
302 Xie Y, Niu F, Yu A, Lai G. Proximity Binding-Triggered Assembly of Two MNAzymes for Catalyzed Release of G-Quadruplex DNAzymes and an Ultrasensitive Homogeneous Bioassay of Platelet-Derived Growth Factor. Anal Chem 2020;92:593-8. [DOI: 10.1021/acs.analchem.9b05002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
303 Anand RK, Rahn KL. Interfacing electronic and genetic circuits. Nat Chem 2020;12:14-6. [PMID: 31827273 DOI: 10.1038/s41557-019-0403-x] [Reference Citation Analysis]
304 Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. CMC 2019;26:6349-98. [DOI: 10.2174/0929867326666190104164653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
305 Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2020;151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
306 Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M. A composite film prepared from titanium carbide Ti3C2Tx (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Mikrochim Acta 2019;187:33. [PMID: 31814085 DOI: 10.1007/s00604-019-4018-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
307 Mayorga‐martinez CC, Pumera M. Self‐Propelled Tags for Protein Detection. Adv Funct Mater 2019;30:1906449. [DOI: 10.1002/adfm.201906449] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
308 Limthin D, Klamchuen A, Phromyothin D. Surface modification of superparamagnetic iron oxide nanoparticles and methyl methacrylate molecularly imprinted polymer for gluten detection. Ferroelectrics 2019;552:97-107. [DOI: 10.1080/00150193.2019.1653086] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
309 Liu X, Li X, Li J, Jiang B, Yuan R, Xiang Y. A multi-recycling amplification-based sensor for label-free and highly sensitive detection of telomerase from cancer cells. Analytica Chimica Acta 2019;1086:116-21. [DOI: 10.1016/j.aca.2019.08.033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
310 Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E, Labib M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2020;150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Cited by in Crossref: 72] [Cited by in F6Publishing: 78] [Article Influence: 24.0] [Reference Citation Analysis]
311 Nandhakumar P, Ichzan AM, Lee NS, Yoon YH, Ma S, Kim S, Yang H. Carboxyl Esterase-Like Activity of DT-Diaphorase and Its Use for Signal Amplification. ACS Sens 2019;4:2966-73. [PMID: 31647639 DOI: 10.1021/acssensors.9b01448] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
312 Harandizadeh Z, Ito T. Block Copolymer‐Derived Recessed Nanodisk‐Array Electrodes as Platforms for Folding‐Based Electrochemical DNA Sensors. ChemElectroChem 2019;6:5627-32. [DOI: 10.1002/celc.201901562] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
313 Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019;91:14792-802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
314 Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019;186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 22.7] [Reference Citation Analysis]
315 Hao J, Li C, Wu K, Hu C, Yang N. Detection of Tumor Marker Using ZnO@Reduced Graphene Oxide Decorated with Alkaline Phosphatase-Labeled Magnetic Beads. ACS Appl Nano Mater 2019;2:7747-54. [DOI: 10.1021/acsanm.9b01797] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
316 Khoshnevisan K, Honarvarfard E, Torabi F, Maleki H, Baharifar H, Faridbod F, Larijani B, Khorramizadeh MR. Electrochemical detection of serotonin: A new approach. Clin Chim Acta 2020;501:112-9. [PMID: 31715139 DOI: 10.1016/j.cca.2019.10.028] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
317 Das J, Kelley SO. High‐Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem 2020;132:2574-84. [DOI: 10.1002/ange.201905005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
318 Das J, Kelley SO. High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem Int Ed Engl 2020;59:2554-64. [PMID: 31332937 DOI: 10.1002/anie.201905005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
319 Das R, Singh N. Exploring electrochemistry of carbon nanodots and its application in noninvasive bacterial growth monitoring. Biosensors and Bioelectronics 2019;144:111640. [DOI: 10.1016/j.bios.2019.111640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
320 Gu Z, Zhao S, Xu G, Chen C, Wang Y, Gu H, Sun Y, Xu H. Solid-phase PCR based on thermostable, encoded magnetic microspheres for simple, highly sensitive and multiplexed nucleic acid detection. Sensors and Actuators B: Chemical 2019;298:126953. [DOI: 10.1016/j.snb.2019.126953] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
321 Su C, Li Z, Zhang D, Wang Z, Zhou X, Liao L, Xiao X. A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen. Biosens Bioelectron 2020;148:111819. [PMID: 31678825 DOI: 10.1016/j.bios.2019.111819] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
322 H. T. P, Nayaka YA, K. V. B, R. O. Y, P. M, M. M. V. An electrochemical study of Atenolol using Patton and Reeder’s modified pencil graphite electrode as an electrochemical sensor. International Journal of Environmental Analytical Chemistry 2021;101:450-63. [DOI: 10.1080/03067319.2019.1667989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
323 Dhanjai, Balla P, Sinha A, Wu L, Lu X, Tan D, Chen J. Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta 2019;203:112-21. [DOI: 10.1016/j.talanta.2019.05.056] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
324 Aoki H, Corn RM, Matthews B. MicroRNA detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosensors and Bioelectronics 2019;142:111565. [DOI: 10.1016/j.bios.2019.111565] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
325 Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS Nano 2019;13:9781-810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Cited by in Crossref: 155] [Cited by in F6Publishing: 124] [Article Influence: 51.7] [Reference Citation Analysis]
326 Manickam P, Kanagavel V, Sonawane A, Thipperudraswamy S, Bhansali S. Electrochemical Systems for Healthcare Applications. Bioelectrochemical Interface Engineering 2019. [DOI: 10.1002/9781119611103.ch20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
327 Harshavardhan S, Rajadas SE, Vijayakumar KK, Durai WA, Ramu A, Mariappan R. Electrochemical Immunosensors. Bioelectrochemical Interface Engineering 2019. [DOI: 10.1002/9781119611103.ch18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
328 Li CC, Wang ZY, Wang LJ, Zhang CY. Biosensors for epigenetic biomarkers detection: A review. Biosens Bioelectron 2019;144:111695. [PMID: 31526982 DOI: 10.1016/j.bios.2019.111695] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
329 Chen Z, Liu S, Yu X, Hao L, Wang L, Liu S. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. Analyst 2019;144:5971-9. [PMID: 31498361 DOI: 10.1039/c9an01325c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
330 Canady TD, Li N, Smith LD, Lu Y, Kohli M, Smith AM, Cunningham BT. Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc Natl Acad Sci U S A 2019;116:19362-7. [PMID: 31501320 DOI: 10.1073/pnas.1904770116] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
331 Kaur R, Saini S, Kaur N, Singh N, Jang DO. Rhodamine-based fluorescent probe for sequential detection of Al3+ ions and adenosine monophosphate in water. Spectrochim Acta A Mol Biomol Spectrosc 2020;225:117523. [PMID: 31525630 DOI: 10.1016/j.saa.2019.117523] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
332 Qiao Y, Qian Y, Liu M, Liu N, Tang X. Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin. Chem Res Chin Univ 2019;35:837-41. [DOI: 10.1007/s40242-019-8378-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
333 Zhou S, Xu H, Wei Y, Gao J, Feng Y, Wang N, Gao J. Platelet Nitrogen and Sulfur Co-Doped Ordered Mesoporous Carbon with Inexpensive Methylene Blue as a Single Precursor for Electrochemical Detection of Herbicide Amitrole. NANO 2019;14:1950104. [DOI: 10.1142/s1793292019501042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
334 Wang C, Li Y, Zhao Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens Bioelectron 2019;144:111641. [PMID: 31494505 DOI: 10.1016/j.bios.2019.111641] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 18.3] [Reference Citation Analysis]
335 Dai Y, Abbasi K, Bandyopadhyay S, Liu CC. Dynamic Control of Peptide Strand Displacement Reaction Using Functional Biomolecular Domain for Biosensing. ACS Sens 2019;4:1980-5. [PMID: 31309821 DOI: 10.1021/acssensors.9b00831] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
336 Hussain S, Zhao H, Zhou L, Zhou X, Iyer PK, Lv F, Liu L, Wang S. An Optoelectronic Device for Rapid Monitoring of Creatine Kinase Using Cationic Conjugated Polyelectrolyte. Adv Mater Technol 2019;4:1900361. [DOI: 10.1002/admt.201900361] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
337 Huang M, Song J, Huang P, Chen X, Wang W, Zhu Z, Song Y, Yang C. Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. Anal Chem 2019;91:10879-86. [PMID: 31347355 DOI: 10.1021/acs.analchem.9b02697] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
338 Li C, Hao J, Wu K. Triethylamine-controlled Cu-BTC frameworks for electrochemical sensing fish freshness. Anal Chim Acta 2019;1085:68-74. [PMID: 31522732 DOI: 10.1016/j.aca.2019.07.064] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
339 Zhai Q, Cheng W. Soft and stretchable electrochemical biosensors. Materials Today Nano 2019;7:100041. [DOI: 10.1016/j.mtnano.2019.100041] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 9.7] [Reference Citation Analysis]
340 Anusha JR, Kim BC, Yu KH, Raj CJ. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens Bioelectron 2019;142:111511. [PMID: 31319325 DOI: 10.1016/j.bios.2019.111511] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 11.3] [Reference Citation Analysis]
341 Somasundaram S, Easley CJ. A Nucleic Acid Nanostructure Built through On-Electrode Ligation for Electrochemical Detection of a Broad Range of Analytes. J Am Chem Soc 2019;141:11721-6. [PMID: 31257869 DOI: 10.1021/jacs.9b06229] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
342 Chen J, Wang M, Ye Y, Yang Z, Ruan Z, Jin N. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomed Microdevices 2019;21:63. [PMID: 31273475 DOI: 10.1007/s10544-019-0413-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
343 Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems. Angew Chem Int Ed Engl 2019;58:12355-68. [PMID: 30990933 DOI: 10.1002/anie.201901879] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 31.3] [Reference Citation Analysis]
344 Bhatia A, Nandhakumar P, Kim G, Kim J, Lee NS, Yoon YH, Yang H. Ultrasensitive Detection of Parathyroid Hormone through Fast Silver Deposition Induced by Enzymatic Nitroso Reduction and Redox Cycling. ACS Sens 2019;4:1641-7. [PMID: 31188576 DOI: 10.1021/acssensors.9b00456] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
345 Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point‐of‐Care Systems. Angew Chem 2019;131:12483-96. [DOI: 10.1002/ange.201901879] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
346 Shakya AK, Nandakumar KS. An update on smart biocatalysts for industrial and biomedical applications. J R Soc Interface 2018;15:20180062. [PMID: 29491182 DOI: 10.1098/rsif.2018.0062] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
347 Jia M, Liu Z, Wu C, Zhang Z, Ma L, Lu X, Mao Y, Zhang H. Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics. Analyst 2019;144:4505-12. [PMID: 31225571 DOI: 10.1039/c9an00569b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
348 Han X, Yu Z, Li F, Shi W, Fu C, Yan H, Zhang G. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance. Bioelectrochemistry 2019;129:270-7. [PMID: 31254804 DOI: 10.1016/j.bioelechem.2019.06.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
349 Valiyakhmetova AM, Sultanova ED, Burilov VA, Solovieva SE, Antipin IS. New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles. Russ Chem Bull 2019;68:1067-74. [DOI: 10.1007/s11172-019-2521-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
350 Bian T, Liu H, Sun B, Xiao B, Jiang Y, Jin C, Yuan A, Zhang H, Yang D. Ion-templated fabrication of Pt-Cu alloy octahedra with controlled compositions for electrochemical detection of H2O2. Journal of Alloys and Compounds 2019;788:1334-40. [DOI: 10.1016/j.jallcom.2019.02.195] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
351 Zhang T, Xu Z, Xu H, Gu Y, Xing Y, Yan X, Liu H, Lu N, Song Y, Zhang S, Zhang Z, Yang M. Catechol and zwitterion-bifunctionalized poly(ethylene glycol) based ultrasensitive antifouling electrochemical aptasensor for the quantification of adenosine triphosphate in biological media. Sensors and Actuators B: Chemical 2019;288:469-75. [DOI: 10.1016/j.snb.2019.03.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
352 Kalambate PK, Dhanjai, Huang Z, Li Y, Shen Y, Xie M, Huang Y, Srivastava AK. Core@shell nanomaterials based sensing devices: A review. TrAC Trends in Analytical Chemistry 2019;115:147-61. [DOI: 10.1016/j.trac.2019.04.002] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 24.7] [Reference Citation Analysis]
353 Malecka K, Pankratov D, Ferapontova EE. Femtomolar electroanalysis of a breast cancer biomarker HER-2/neu protein in human serum by the cellulase-linked sandwich assay on magnetic beads. Anal Chim Acta 2019;1077:140-9. [PMID: 31307703 DOI: 10.1016/j.aca.2019.05.052] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
354 Chen W, Ji D, Zhang Y, Xu P, Gao X, Fang J, Li X, Feng L, Wen W. Schiff-base reaction induced selective sensing of trace dopamine based on a Pt41Rh59 alloy/ZIF-90 nanocomposite. Nanotechnology 2019;30:335708. [DOI: 10.1088/1361-6528/ab1bfb] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
355 Bai L, Elósegui CG, Li W, Yu P, Fei J, Mao L. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Front Chem 2019;7:313. [PMID: 31134185 DOI: 10.3389/fchem.2019.00313] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 18.3] [Reference Citation Analysis]
356 Ma Y, Chen A, Xie X, Wang X, Wang D, Wang P, Li H, Yang J, Li Y. Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine. Talanta 2019;196:563-71. [DOI: 10.1016/j.talanta.2019.01.001] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
357 Fu K, Xu W, Hu J, Lopez A, Bohn PW. Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harb Perspect Med 2019;9:a034249. [PMID: 30104197 DOI: 10.1101/cshperspect.a034249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
358 Kong L, Rohaizad N, Nasir MZM, Guan J, Pumera M. Micromotor-Assisted Human Serum Glucose Biosensing. Anal Chem 2019;91:5660-6. [DOI: 10.1021/acs.analchem.8b05464] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
359 Gonzalez J, Sequí J. Square Wave Voltcoulommetry Analysis of the Influence of the Electrostatic Environment on the Electrochemical Functionality of Redox Monolayers. ChemElectroChem 2019;6:2290-301. [DOI: 10.1002/celc.201900352] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
360 Liu X, Li X, Gao X, Ge L, Sun X, Li F. A Universal Paper-Based Electrochemical Sensor for Zero-Background Assay of Diverse Biomarkers. ACS Appl Mater Interfaces 2019;11:15381-8. [DOI: 10.1021/acsami.9b03860] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 22.0] [Reference Citation Analysis]
361 Viet NX, Hoan NX, Takamura Y. Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Materials Chemistry and Physics 2019;227:123-9. [DOI: 10.1016/j.matchemphys.2019.01.068] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
362 Furst AL, Muren NB, Hill MG. Toward multimarker and functional assays from crude cell lysates: controlling spacing and signal amplification in DNA-CT–based bioelectrochemical devices. Current Opinion in Electrochemistry 2019;14:104-12. [DOI: 10.1016/j.coelec.2018.12.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
363 Taniselass S, Arshad MM, Gopinath SC. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosensors and Bioelectronics 2019;130:276-92. [DOI: 10.1016/j.bios.2019.01.047] [Cited by in Crossref: 129] [Cited by in F6Publishing: 134] [Article Influence: 43.0] [Reference Citation Analysis]
364 Zhu X, Zhao J, Jia T, Li S, Li N, Hou H, Zhong R, Fan Z, Guo M. A comparison study of graphene-cyclodextrin conjugates for enhanced electrochemical performance of tyramine compounds. Carbohydrate Polymers 2019;209:258-65. [DOI: 10.1016/j.carbpol.2019.01.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
365 Yuan Y, Xun Z, Zhang B, Guan Y. Electrochemical Signal Enhancer Fabricated Using Lysine‐rich Peptide for Ultrasensitive Electrochemical DNA Biosensor Analysis. Electroanalysis 2019;31:607-610. [DOI: 10.1002/elan.201800697] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
366 Liu X, Chen X, Xu Y, Chen T, Zeng X. Effects of water on ionic liquid electrochemical microsensor for oxygen sensing. Sensors and Actuators B: Chemical 2019;285:350-7. [DOI: 10.1016/j.snb.2019.01.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
367 Apetrei IM, Apetrei C. Development of a Novel Biosensor Based on Tyrosinase/Platinum Nanoparticles/Chitosan/Graphene Nanostructured Layer with Applicability in Bioanalysis. Materials (Basel) 2019;12:E1009. [PMID: 30934702 DOI: 10.3390/ma12071009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
368 Bagheri N, Cinti S, Caratelli V, Massoud R, Saraji M, Moscone D, Arduini F. A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosens Bioelectron 2019;134:97-102. [PMID: 30959394 DOI: 10.1016/j.bios.2019.03.037] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
369 Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019;48:1390-419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 36.3] [Reference Citation Analysis]
370 Zhang T, Xu H, Xu Z, Gu Y, Yan X, Liu H, Lu N, Zhang S, Zhang Z, Yang M. A bioinspired antifouling zwitterionic interface based on reduced graphene oxide carbon nanofibers: electrochemical aptasensing of adenosine triphosphate. Mikrochim Acta 2019;186:240. [PMID: 30868250 DOI: 10.1007/s00604-019-3343-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
371 Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors (Basel) 2019;19:E1279. [PMID: 30871280 DOI: 10.3390/s19061279] [Cited by in Crossref: 125] [Cited by in F6Publishing: 127] [Article Influence: 41.7] [Reference Citation Analysis]
372 Antuch M, Matos‐peralta Y, Llanes D, Echevarría F, Rodríguez‐hernández J, Marin MH, Díaz‐garcía AM, Reguera L. Bimetallic Co 2+ and Mn 2+ Hexacyanoferrate for Hydrogen Peroxide Electrooxidation and Its Application in a Highly Sensitive Cholesterol Biosensor. ChemElectroChem 2019;6:1567-73. [DOI: 10.1002/celc.201900190] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
373 Riaz MA, Zhai S, Wei L, Zhou Z, Yuan Z, Wang Y, Huang Q, Liao X, Chen Y. Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical 2019;283:304-11. [DOI: 10.1016/j.snb.2018.12.041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
374 Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C. Recent Developments in Detection Using Noble Metal Nanoparticles. Critical Reviews in Analytical Chemistry 2020;50:97-110. [DOI: 10.1080/10408347.2019.1576496] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 11.3] [Reference Citation Analysis]
375 Cui M, Shao Z, Lu D, Wang Y. Eco-Friendly Electrochemical Biosensor based on Sodium Carboxymethyl Cellulose/Reduced Graphene Oxide Composite. Macromol Res 2019;27:327-33. [DOI: 10.1007/s13233-019-7054-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
376 Leung KK, Yu HZ, Bizzotto D. Electrodepositing DNA Self-Assembled Monolayers on Au: Detailing the Influence of Electrical Potential Perturbation and Surface Crystallography. ACS Sens 2019;4:513-20. [PMID: 30672700 DOI: 10.1021/acssensors.8b01695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
377 Cinti S. Novel paper-based electroanalytical tools for food surveillance. Anal Bioanal Chem 2019;411:4303-11. [DOI: 10.1007/s00216-019-01640-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
378 Kumar S, Haque AJ, Sabaté Del Río J, Gautam S, Cho YK. Universal method for direct bioconjugation of electrode surfaces by fast enzymatic polymerization. Biosens Bioelectron 2019;127:50-6. [PMID: 30592993 DOI: 10.1016/j.bios.2018.12.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
379 Song Y, Xu T, Xu LP, Zhang X. Nanodendritic gold/graphene-based biosensor for tri-mode miRNA sensing. Chem Commun (Camb) 2019;55:1742-5. [PMID: 30663738 DOI: 10.1039/c8cc09586h] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 17.0] [Reference Citation Analysis]
380 Pei Y, Hu M, Tang X, Huang W, Li Z, Chen S, Xia Y. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal Chim Acta 2019;1059:49-58. [PMID: 30876632 DOI: 10.1016/j.aca.2019.01.059] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
381 Yin Z, Wang S, Shen B, Deng C, Tu Q, Jin Y, Shen L, Jiao B, Xiang J. Coimmunocapture and Electrochemical Quantitation of Total and Phosphorylated Amyloid-β 40 Monomers. Anal Chem 2019;91:3539-45. [DOI: 10.1021/acs.analchem.8b05307] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
382 Kurra N, Jiang Q, Nayak P, Alshareef HN. Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today 2019;24:81-102. [DOI: 10.1016/j.nantod.2018.12.003] [Cited by in Crossref: 94] [Cited by in F6Publishing: 95] [Article Influence: 31.3] [Reference Citation Analysis]
383 Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017;184:3049-67. [PMID: 29109592 DOI: 10.1007/s00604-017-2410-1] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 25.0] [Reference Citation Analysis]
384 Dai Y, Chiu LY, Chen Y, Qin S, Wu X, Liu CC. Neutral Charged Immunosensor Platform for Protein-based Biomarker Analysis with Enhanced Sensitivity. ACS Sens 2019;4:161-9. [PMID: 30582808 DOI: 10.1021/acssensors.8b01126] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
385 Tawfik SM, Elmasry MR, Lee Y. Recent advances on amphiphilic polymer-based fluorescence spectroscopic techniques for sensing and imaging. Applied Spectroscopy Reviews 2019;54:204-36. [DOI: 10.1080/05704928.2018.1548356] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
386 Zhang Y, Wang Y, Shi Y, Huang H, Wang X, Zhao L. One Step Synthesis of Covalent Connected Three-dimensional Graphene/Carbon Nanotube for Olaquindox Electrochemical Sensor. Electrochemistry 2019;87:20-5. [DOI: 10.5796/electrochemistry.18-00040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
387 Zhou Y, Kermansha L, Zhang L, Mohamadi RM. Miniaturized Electrochemical Sensors to Facilitate Liquid Biopsy for Detection of Circulating Tumor Markers. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_4] [Reference Citation Analysis]
388 He S, Ma Y, Zhou J, Zeng J, Liu X, Huang Z, Chen X, Chen X. A direct “touch” approach for gold nanoflowers decoration on graphene/ionic liquid composite modified electrode with good properties for sensing bisphenol A. Talanta 2019;191:400-8. [DOI: 10.1016/j.talanta.2018.08.093] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
389 Zhang G, Dong H, Zhang X. Fluorescence proximity assay based on a metal–organic framework platform. Chem Commun 2019;55:8158-61. [DOI: 10.1039/c9cc02961c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
390 Liu H, Ge J, Ma E, Yang L. Advanced biomaterials for biosensor and theranostics. Biomaterials in Translational Medicine. Elsevier; 2019. pp. 213-55. [DOI: 10.1016/b978-0-12-813477-1.00010-4] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
391 Suresh R, Pandiaraj M, Sankaralingam M, Giribabu K. Graphene–Metal Chalcogenide Modified Electrochemical Sensors. Graphene-Based Electrochemical Sensors for Biomolecules 2019. [DOI: 10.1016/b978-0-12-815394-9.00006-6] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
392 Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B 2019;7:7283-300. [DOI: 10.1039/c9tb01644a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
393 Liu Y, Zhu Z, Wang C, Gao R, Yang X, Liu S. Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors. Analyst 2019;144:2130-7. [DOI: 10.1039/c8an02313a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
394 Tian L, Zhao H, Zhao Z, Zhai J, Zhang Z. A facile voltammetric method for detection of heparin in plasma based on the polyethylenimine modified electrode. Anal Methods 2019;11:1324-30. [DOI: 10.1039/c8ay02722f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
395 Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019;48:5717-51. [DOI: 10.1039/c9cs00174c] [Cited by in Crossref: 122] [Cited by in F6Publishing: 128] [Article Influence: 40.7] [Reference Citation Analysis]
396 Li B, Pu W, Xu H, Ge L, Kwok HF, Hu L. Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres. Analyst 2019;144:1433-41. [DOI: 10.1039/c8an01978a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
397 Kurniawan A, Kurniawan F, Gunawan F, Chou S, Wang M. Disposable electrochemical sensor based on copper-electrodeposited screen-printed gold electrode and its application in sensing l-Cysteine. Electrochimica Acta 2019;293:318-27. [DOI: 10.1016/j.electacta.2018.08.140] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
398 Sinha A, Dhanjai, Mugo SM, Zhao H, Chen J, Jain R. Electrochemical Immunosensors for Rapid Detection of Breast Cancer Biomarkers. Advanced Biosensors for Health Care Applications 2019. [DOI: 10.1016/b978-0-12-815743-5.00005-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
399 Liu N, Xu Z, Morrin A, Luo X. Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Anal Methods 2019;11:702-11. [DOI: 10.1039/c8ay02674b] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 19.3] [Reference Citation Analysis]
400 Shadman SM, Daneshi M, Shafiei F, Azimimehr M, Khorasgani MR, Sadeghian M, Motaghi H, Mehrgardi MA. Aptamer-based electrochemical biosensors. Electrochemical Biosensors 2019. [DOI: 10.1016/b978-0-12-816491-4.00008-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
401 Yao T, Hun X. A design for the photoelectrochemical detection of miRNA-221 based on a tungsten diselenide–cysteine–dopamine nanoprobe coupled with mismatched catalytic hairpin assembly target recycling with ultra-low background noise. Chem Commun 2019;55:10380-3. [DOI: 10.1039/c9cc05625d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
402 Yang Y, Huang Y, Li C. A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Anal Chim Acta 2019;1055:90-7. [PMID: 30782375 DOI: 10.1016/j.aca.2018.12.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
403 Furst AL, Francis MB. Impedance-Based Detection of Bacteria. Chem Rev 2019;119:700-26. [DOI: 10.1021/acs.chemrev.8b00381] [Cited by in Crossref: 134] [Cited by in F6Publishing: 115] [Article Influence: 33.5] [Reference Citation Analysis]
404 Huang J, Zhang S, Mo F, Su S, Chen X, Li Y, Fang L, Huang H, Deng J, Liu H, Yang X, Zheng J. An electrochemical DNA biosensor analytic technique for identifying DNA methylation specific sites and quantify DNA methylation level. Biosens Bioelectron 2019;127:155-60. [PMID: 30597434 DOI: 10.1016/j.bios.2018.12.022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
405 Ranallo S, Porchetta A, Ricci F. DNA-Based Scaffolds for Sensing Applications. Anal Chem 2019;91:44-59. [PMID: 30501170 DOI: 10.1021/acs.analchem.8b05009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 14.8] [Reference Citation Analysis]
406 Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018;143:4802-18. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
407 Liu Y, Gao C, Li Q, Pang H. Nickel Oxide/Graphene Composites: Synthesis and Applications. Chem Eur J 2019;25:2141-60. [DOI: 10.1002/chem.201803982] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
408 Bettazzi F, Palchetti I. Photoelectrochemical genosensors for the determination of nucleic acid cancer biomarkers. Current Opinion in Electrochemistry 2018;12:51-9. [DOI: 10.1016/j.coelec.2018.07.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
409 Xu W, Paidi SK, Qin Z, Huang Q, Yu CH, Pagaduan JV, Buehler MJ, Barman I, Gracias DH. Self-Folding Hybrid Graphene Skin for 3D Biosensing. Nano Lett 2019;19:1409-17. [PMID: 30433789 DOI: 10.1021/acs.nanolett.8b03461] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
410 Shen J, Zhang Y, Hu R, Kwok RTK, Wang Z, Qin A, Tang BZ. Dual-Mode Ultrasensitive Detection of Nucleic Acids via an Aqueous “Seesaw” Strategy by Combining Aggregation-Induced Emission and Plasmonic Colorimetry. ACS Appl Nano Mater 2019;2:163-9. [DOI: 10.1021/acsanm.8b01773] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
411 Zhang Y, Ai J, Dong Y, Zhang S, Gao Q, Qi H, Zhang C, Cheng Z. Combining 3D graphene-like screen-printed carbon electrode with methylene blue-loaded liposomal nanoprobes for phospholipase A2 detection. Biosens Bioelectron 2019;126:255-60. [PMID: 30445300 DOI: 10.1016/j.bios.2018.11.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
412 Tufa LT, Oh S, Tran VT, Kim J, Jeong K, Park TJ, Kim H, Lee J. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochimica Acta 2018;290:369-77. [DOI: 10.1016/j.electacta.2018.09.108] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
413 Yang T, Yu R, Yan Y, Zeng H, Luo S, Liu N, Morrin A, Luo X, Li W. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sensors and Actuators B: Chemical 2018;274:501-16. [DOI: 10.1016/j.snb.2018.07.138] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 17.5] [Reference Citation Analysis]
414 Li F, Yu Z, Han X, Shi W, Liu Y, Yan H, Zhang G. A signal-on electrochemical aptasensor for highly sensitive and specific detection of kanamycin based on target-induced signaling probe shifting mechanism. Sensors and Actuators B: Chemical 2018;273:480-7. [DOI: 10.1016/j.snb.2018.06.076] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
415 Teerapanich P, Pugnière M, Henriquet C, Lin Y, Naillon A, Joseph P, Chou C, Leïchlé T. Nanofluidic fluorescence microscopy with integrated concentration gradient generation for one-shot parallel kinetic assays. Sensors and Actuators B: Chemical 2018;274:338-42. [DOI: 10.1016/j.snb.2018.07.167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
416 Ma S, Hu Y, Zhang Q, Guo Z, Wang S, Shen Q, Liu C, Liu Z. Adenine/Au complex-dependent versatile electrochemical platform for ultrasensitive DNA-related enzyme activity assay. Sensors and Actuators B: Chemical 2018;273:760-70. [DOI: 10.1016/j.snb.2018.06.115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
417 Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal Chim Acta 2019;1051:1-23. [PMID: 30661605 DOI: 10.1016/j.aca.2018.10.058] [Cited by in Crossref: 132] [Cited by in F6Publishing: 104] [Article Influence: 33.0] [Reference Citation Analysis]
418 Bhattacharjee R, Moriam S, Nguyen NT, Shiddiky MJA. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens Bioelectron 2019;126:102-7. [PMID: 30396016 DOI: 10.1016/j.bios.2018.10.020] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
419 Salikolimi K, Miyatake H, Aigaki T, Kawamoto M, Ito Y. Thiophene-Conjugated Ligand Probe for Nonenzymatic Turn-On Electrochemical Protein Detection. Anal Chem 2018;90:11179-82. [PMID: 30175583 DOI: 10.1021/acs.analchem.8b03006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
420 Chen X, Hu Q, Chen S, Netzer NL, Wang Z, Zhang S, Zhang Z. Multiplexed analysis of molecular and elemental ions using nanowire transistor sensors. Sensors and Actuators B: Chemical 2018;270:89-96. [DOI: 10.1016/j.snb.2018.05.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
421 Zhang J, Wang L, Hou M, Luo L, Liao Y, Xia Y, Yan A, Weng Y, Zeng L, Chen J. Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes. Biosensors and Bioelectronics 2018;118:1-8. [DOI: 10.1016/j.bios.2018.07.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
422 da Silva LV, de Almeida AK, Xavier JA, Lopes CB, Silva FDADS, Lima PR, dos Santos ND, Kubota LT, Goulart MO. Phenol based redox mediators in electroanalysis. Journal of Electroanalytical Chemistry 2018;827:230-52. [DOI: 10.1016/j.jelechem.2018.05.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
423 Wang G, Das J, Ahmed S, Nemr CR, Zhang L, Poudineh M, Sargent EH, Kelley SO. Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis. ACS Sens 2018;3:1765-72. [PMID: 30080023 DOI: 10.1021/acssensors.8b00494] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
424 Morales MA, Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 2018;29:3231-9. [PMID: 30216055 DOI: 10.1021/acs.bioconjchem.8b00592] [Cited by in Crossref: 146] [Cited by in F6Publishing: 116] [Article Influence: 36.5] [Reference Citation Analysis]
425 Jaiswal S, Singh R, Singh K, Fatma S, Prasad BB. Enantioselective analysis of D- and l- Serine on a layer-by-layer imprinted electrochemical sensor. Biosens Bioelectron 2019;124-125:176-83. [PMID: 30388559 DOI: 10.1016/j.bios.2018.09.090] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
426 Cao C, Jin R, Wei H, Yang W, Goldys EM, Hutchinson MR, Liu S, Chen X, Yang G, Liu G. Graphene Oxide Based Recyclable in Vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice. ACS Appl Mater Interfaces 2018;10:33078-87. [PMID: 30199621 DOI: 10.1021/acsami.8b13518] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
427 de Oliveira RAG, Nicoliche CYN, Pasqualeti AM, Shimizu FM, Ribeiro IR, Melendez ME, Carvalho AL, Gobbi AL, Faria RC, Lima RS. Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Anal Chem 2018;90:12377-84. [DOI: 10.1021/acs.analchem.8b02605] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
428 Balamurugan M, Santharaman P, Madasamy T, Rajesh S, Sethy NK, Bhargava K, Kotamraju S, Karunakaran C. Recent trends in electrochemical biosensors of superoxide dismutases. Biosensors and Bioelectronics 2018;116:89-99. [DOI: 10.1016/j.bios.2018.05.040] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
429 Martins GV, Marques AC, Fortunato E, Sales MGF. Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochimica Acta 2018;284:60-8. [DOI: 10.1016/j.electacta.2018.07.150] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
430 Sun D, Lu J, Chen D, Jiang Y, Wang Z, Qin W, Yu Y, Chen Z, Zhang Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sensors and Actuators B: Chemical 2018;268:359-67. [DOI: 10.1016/j.snb.2018.04.142] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
431 Cohen L, Walt DR. Highly Sensitive and Multiplexed Protein Measurements. Chem Rev 2019;119:293-321. [DOI: 10.1021/acs.chemrev.8b00257] [Cited by in Crossref: 112] [Cited by in F6Publishing: 95] [Article Influence: 28.0] [Reference Citation Analysis]
432 Nandhakumar P, Haque AJ, Lee N, Yoon YH, Yang H. Washing-Free Displacement Immunosensor for Cortisol in Human Serum Containing Numerous Interfering Species. Anal Chem 2018;90:10982-9. [DOI: 10.1021/acs.analchem.8b02590] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
433 Tavallaie R, Mccarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Tilley RD, Hibbert DB, Kavallaris M, Gooding JJ. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotech 2018;13:1066-71. [DOI: 10.1038/s41565-018-0232-x] [Cited by in Crossref: 177] [Cited by in F6Publishing: 182] [Article Influence: 44.3] [Reference Citation Analysis]
434 Persichetti G, Grimaldi IA, Testa G, Bernini R. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis. Lab Chip 2017;17:2631-9. [PMID: 28664956 DOI: 10.1039/c7lc00460e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
435 Bollella P, Gorton L. Enzyme based amperometric biosensors. Current Opinion in Electrochemistry 2018;10:157-73. [DOI: 10.1016/j.coelec.2018.06.003] [Cited by in Crossref: 113] [Cited by in F6Publishing: 115] [Article Influence: 28.3] [Reference Citation Analysis]
436 Sangubotla R, Kim J. Recent trends in analytical approaches for detecting neurotransmitters in Alzheimer's disease. TrAC Trends in Analytical Chemistry 2018;105:240-50. [DOI: 10.1016/j.trac.2018.05.014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]
437 Yao Y, Ping J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. TrAC Trends in Analytical Chemistry 2018;105:75-88. [DOI: 10.1016/j.trac.2018.04.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
438 Djelad H, Huerta F, Morallón E, Montilla F. Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix. European Polymer Journal 2018;105:323-30. [DOI: 10.1016/j.eurpolymj.2018.06.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
439 Liu X, Ran M, Liu G, Liu X, Xue Z, Lu X. A sensitively non-enzymatic amperometric sensor and its application in living cell superoxide anion radical detection. Talanta 2018;186:248-55. [DOI: 10.1016/j.talanta.2018.04.067] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
440 Tian Y, Xin C, Liu S, Liu Y, Liu S. Affinity Binding-Induced Hg2+ Release and Quantum Dot Doping for General, Label-Free, and Homogenous Fluorescence Protein Assay. ACS Sens 2018;3:1401-8. [PMID: 29905068 DOI: 10.1021/acssensors.8b00316] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
441 Zwang TJ, Tse ECM, Barton JK. Sensing DNA through DNA Charge Transport. ACS Chem Biol 2018;13:1799-809. [PMID: 29790735 DOI: 10.1021/acschembio.8b00347] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
442 Ahmad K, Mohammad A, Ansari SN, Mobin SM. Construction of graphene oxide sheets based modified glassy carbon electrode (GO/GCE) for the highly sensitive detection of nitrobenzene. Mater Res Express 2018;5:075601. [DOI: 10.1088/2053-1591/aacd98] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
443 Papadakis G, Murasova P, Hamiot A, Tsougeni K, Kaprou G, Eck M, Rabus D, Bilkova Z, Dupuy B, Jobst G, Tserepi A, Gogolides E, Gizeli E. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosensors and Bioelectronics 2018;111:52-8. [DOI: 10.1016/j.bios.2018.03.056] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
444 Yuan P, Ding X, Yang YY, Xu QH. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Adv Healthc Mater 2018;7:e1701392. [PMID: 29582578 DOI: 10.1002/adhm.201701392] [Cited by in Crossref: 99] [Cited by in F6Publishing: 101] [Article Influence: 24.8] [Reference Citation Analysis]
445 Huang T, Liu Z, Li Y, Li Y, Chao L, Chen C, Tan Y, Xie Q, Yao S, Wu Y. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing. Analytica Chimica Acta 2018;1013:26-35. [DOI: 10.1016/j.aca.2018.02.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
446 Kong D, Wang Y, Lim YV, Huang S, Zhang J, Liu B, Chen T, Yang HY. 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy 2018;49:460-70. [DOI: 10.1016/j.nanoen.2018.04.051] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 21.3] [Reference Citation Analysis]
447 Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal Bioanal Chem 2018;410:5871-8. [PMID: 29938372 DOI: 10.1007/s00216-018-1201-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
448 Lu X, Liu C, Wang Z, Yang J, Xu M, Dong J, Wang P, Gu J, Cao F. Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On⁻Off⁻On Fluorescent Sensors to Detect Fe(III) and Biothiols. Nanomaterials (Basel) 2018;8:E443. [PMID: 29914212 DOI: 10.3390/nano8060443] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
449 Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
450 Lu J, Wu L, Hu Y, Wang S, Guo Z. Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification. Biosensors and Bioelectronics 2018;109:13-9. [DOI: 10.1016/j.bios.2018.02.062] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
451 Hoekstra R, Blondeau P, Andrade FJ. Distributed electrochemical sensors: recent advances and barriers to market adoption. Anal Bioanal Chem 2018;410:4077-89. [PMID: 29806065 DOI: 10.1007/s00216-018-1104-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
452 Yin S, Ma Z. Electrochemical immunoassay for tumor markers based on hydrogels. Expert Review of Molecular Diagnostics 2018;18:457-65. [DOI: 10.1080/14737159.2018.1472579] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
453 Waqas M, Zulfiqar A, Ahmad HB, Akhtar N, Hussain M, Shafiq Z, Abbas Y, Mehmood K, Ajmal M, Yang M. Fabrication of highly stable silver nanoparticles with shape-dependent electrochemical efficacy. Electrochimica Acta 2018;271:641-51. [DOI: 10.1016/j.electacta.2018.03.049] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
454 Ainla A, Mousavi MPS, Tsaloglou MN, Redston J, Bell JG, Fernández-Abedul MT, Whitesides GM. Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones. Anal Chem 2018;90:6240-6. [PMID: 29658268 DOI: 10.1021/acs.analchem.8b00850] [Cited by in Crossref: 176] [Cited by in F6Publishing: 135] [Article Influence: 44.0] [Reference Citation Analysis]
455 Sun J, Zhao J, Bao X, Wang Q, Yang X. Alkaline Phosphatase Assay Based on the Chromogenic Interaction of Diethanolamine with 4-Aminophenol. Anal Chem 2018;90:6339-45. [DOI: 10.1021/acs.analchem.8b01371] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
456 Gao ZF, Sann EE, Lou X, Liu R, Dai J, Zuo X, Xia F, Jiang L. Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Mater 2018;10:177-89. [DOI: 10.1038/s41427-018-0024-7] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 10.8] [Reference Citation Analysis]
457 Ibanez JG, Rincón ME, Gutierrez-granados S, Chahma M, Jaramillo-quintero OA, Frontana-uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018;118:4731-816. [DOI: 10.1021/acs.chemrev.7b00482] [Cited by in Crossref: 247] [Cited by in F6Publishing: 196] [Article Influence: 61.8] [Reference Citation Analysis]
458 Hao J, Wu K, Wan C, Tang Y. Reduced graphene oxide-ZnO nanocomposite based electrochemical sensor for sensitive and selective monitoring of 8-hydroxy-2'-deoxyguanosine. Talanta 2018;185:550-6. [PMID: 29759240 DOI: 10.1016/j.talanta.2018.04.028] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
459 Yang Y, Yang X, Yang Y, Yuan Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018;129:380-95. [DOI: 10.1016/j.carbon.2017.12.013] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 25.8] [Reference Citation Analysis]
460 Zhang Q, Zhao D, Zhang C, Liu J, An Z, Qin X, Gao Y, Zhang S, Li L, Huang W. An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. Sensors and Actuators B: Chemical 2018;259:633-41. [DOI: 10.1016/j.snb.2017.12.118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
461 Su S, Chen S, Fan C. Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy & Environment 2018;3:97-106. [DOI: 10.1016/j.gee.2017.08.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 61] [Article Influence: 10.5] [Reference Citation Analysis]
462 Dilgin DG, Ertek B, Dilgin Y. A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. J IRAN CHEM SOC 2018;15:1355-63. [DOI: 10.1007/s13738-018-1335-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
463 Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angew Chem Int Ed Engl 2018;57:3711-6. [PMID: 29389071 DOI: 10.1002/anie.201800455] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 11.5] [Reference Citation Analysis]
464 Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angew Chem 2018;130:3773-8. [DOI: 10.1002/ange.201800455] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
465 Wang P, Cheng Z, Chen Q, Qu L, Miao X, Feng Q. Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sensors and Actuators B: Chemical 2018;256:931-7. [DOI: 10.1016/j.snb.2017.10.024] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
466 Das A, Sangaranarayanan M. A sensitive electrochemical detection of progesterone using tin-nanorods modified glassy carbon electrodes: Voltammetric and computational studies. Sensors and Actuators B: Chemical 2018;256:775-89. [DOI: 10.1016/j.snb.2017.10.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
467 Miranda-castro R, Santos-álvarez ND, Lobo-castañón MJ. Understanding the Factors Affecting the Analytical Performance of Sandwich-hybridization Genosensors on Gold Electrodes. Electroanalysis 2018;30:1229-40. [DOI: 10.1002/elan.201800049] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
468 White SP, Frisbie CD, Dorfman KD. Detection and Sourcing of Gluten in Grain with Multiple Floating-Gate Transistor Biosensors. ACS Sens 2018;3:395-402. [PMID: 29411606 DOI: 10.1021/acssensors.7b00810] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
469 Martens I, Fisher EA, Bizzotto D. Direct Mapping of Heterogeneous Surface Coverage in DNA-Functionalized Gold Surfaces with Correlated Electron and Fluorescence Microscopy. Langmuir 2018;34:2425-31. [DOI: 10.1021/acs.langmuir.7b03766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
470 Cheng ZX, Bonanni A. All-in-One: Electroactive Nanocarbon as Simultaneous Platform and Label for Single-Step Biosensing. Chemistry 2018;24:6380-5. [PMID: 29315887 DOI: 10.1002/chem.201705729] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
471 Ranjbar S, Shahrokhian S, Nurmohammadi F. Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sensors and Actuators B: Chemical 2018;255:1536-44. [DOI: 10.1016/j.snb.2017.08.160] [Cited by in Crossref: 67] [Cited by in F6Publishing: 50] [Article Influence: 16.8] [Reference Citation Analysis]
472 Yang J, Wu H, Yang P, Hou C, Huo D. A high performance N-doped carbon quantum dots/5,5′-dithiobis-(2-nitrobenzoic acid) fluorescent sensor for biothiols detection. Sensors and Actuators B: Chemical 2018;255:3179-86. [DOI: 10.1016/j.snb.2017.09.143] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
473 Gonzalez J, Sequí JA. Kinetic Implications of the Presence of Intermolecular Interactions in the Response of Binary Self-Assembled Electroactive Monolayers. ACS Omega 2018;3:1276-92. [PMID: 31457964 DOI: 10.1021/acsomega.7b01995] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
474 Gonzalez-Solino C, Lorenzo MD. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. Biosensors (Basel) 2018;8:E11. [PMID: 29382147 DOI: 10.3390/bios8010011] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 20.0] [Reference Citation Analysis]
475 Bizzotto D, Burgess IJ, Doneux T, Sagara T, Yu HZ. Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces. ACS Sens 2018;3:5-12. [PMID: 29282982 DOI: 10.1021/acssensors.7b00840] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 12.5] [Reference Citation Analysis]
476 Yang T, Chen H, Qiu Z, Yu R, Luo S, Li W, Jiao K. Direct Electrochemical Vibrio DNA Sensing Adopting Highly Stable Graphene-Flavin Mononucleotide Aqueous Dispersion Modified Interface. ACS Appl Mater Interfaces 2018;10:4540-7. [PMID: 29334458 DOI: 10.1021/acsami.7b18212] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
477 Fu K, Bohn PW. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions. ACS Cent Sci 2018;4:20-9. [PMID: 29392173 DOI: 10.1021/acscentsci.7b00576] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
478 Saylan Y, Yılmaz F, Özgür E, Derazshamshir A, Bereli N, Yavuz H, Denizli A. Surface Plasmon Resonance Sensors for Medical Diagnosis. In: Kumar CS, editor. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Berlin: Springer Berlin Heidelberg; 2018. pp. 425-58. [DOI: 10.1007/978-3-662-56333-5_10] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
479 Wei B, Zhang J, Ou X, Lou X, Xia F, Vallée-Bélisle A. Engineering Biosensors with Dual Programmable Dynamic Ranges. Anal Chem 2018;90:1506-10. [PMID: 29300471 DOI: 10.1021/acs.analchem.7b04852] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
480 Lin M, Zuo X. Electrochemical Sandwich Assays for Nucleic Acid Detection. In: Xia F, Zhang X, Lou X, Yuan Q, editors. Biosensors Based on Sandwich Assays. Singapore: Springer; 2018. pp. 127-47. [DOI: 10.1007/978-981-10-7835-4_8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
481 Mavrič T, Benčina M, Imani R, Junkar I, Valant M, Kralj-iglič V, Iglič A. Electrochemical Biosensor Based on TiO 2 Nanomaterials for Cancer Diagnostics. Elsevier; 2018. pp. 63-105. [DOI: 10.1016/bs.abl.2017.12.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
482 Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. TrAC Trends in Analytical Chemistry 2018;98:174-89. [DOI: 10.1016/j.trac.2017.11.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
483 Wang J, Ma G, Huang W, He Y. Visible-light initiated polymerization of dopamine in a neutral environment for surface coating and visual protein detection. Polym Chem 2018;9:5242-7. [DOI: 10.1039/c8py01140k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
484 Pachauri N, Dave K, Dinda A, Solanki PR. Cubic CeO 2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J Mater Chem B 2018;6:3000-12. [DOI: 10.1039/c8tb00653a] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 12.3] [Reference Citation Analysis]
485 Carvalho WSP, Wei M, Ikpo N, Gao Y, Serpe MJ. Polymer-Based Technologies for Sensing Applications. Anal Chem 2017;90:459-79. [DOI: 10.1021/acs.analchem.7b04751] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
486 Porifreva AV, Gorbatchuk VV, Evtugyn VG, Stoikov II, Evtugyn GA. Glassy Carbon Electrode Modified with Silver Nanodendrites Implemented in Polylactide-Thiacalix[4]arene Copolymer for the Electrochemical Determination of Tryptophan. Electroanalysis 2018;30:641-9. [DOI: 10.1002/elan.201700638] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
487 Gan C, Wang B, Huang J, Qileng A, He Z, Lei H, Liu W, Liu Y. Multiple amplified enzyme-free electrochemical immunosensor based on G-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection. Biosensors and Bioelectronics 2017;98:126-33. [DOI: 10.1016/j.bios.2017.06.038] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
488 Hu Y, Zhang Q, Guo Z, Wang S, Du C, Zhai C. In situ grown DNA nanotail-templated silver nanoclusters enabling label-free electrochemical sensing of terminal deoxynucleotidyl transferase activity. Biosensors and Bioelectronics 2017;98:91-9. [DOI: 10.1016/j.bios.2017.06.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
489 Li Z, Narouz MR, Munro K, Hao B, Crudden CM, Horton JH, Hao H. Carboxymethylated Dextran-Modified N -Heterocyclic Carbene Self-Assembled Monolayers on Gold for Use in Surface Plasmon Resonance Biosensing. ACS Appl Mater Interfaces 2017;9:39223-34. [DOI: 10.1021/acsami.7b13114] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
490 Li N, Liu SG, Zhu YD, Liu T, Lin SM, Shi Y, Luo HQ, Li NB. Tuning gold nanoparticles growth via DNA and carbon dots for nucleic acid and protein detection. Sensors and Actuators B: Chemical 2017;251:455-61. [DOI: 10.1016/j.snb.2017.05.071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
491 Zhao L, Ma Z. Facile synthesis of polyaniline-polythionine redox hydrogel: Conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal Chim Acta 2018;997:60-6. [PMID: 29149995 DOI: 10.1016/j.aca.2017.10.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
492 Tung TT, Nine MJ, Krebsz M, Pasinszki T, Coghlan CJ, Tran DNH, Losic D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Adv Funct Mater 2017;27:1702891. [DOI: 10.1002/adfm.201702891] [Cited by in Crossref: 162] [Cited by in F6Publishing: 164] [Article Influence: 32.4] [Reference Citation Analysis]
493 Miao X, Yu H, Gu Z, Yang L, Teng J, Cao Y, Zhao J. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem 2017;409:6723-30. [PMID: 29026956 DOI: 10.1007/s00216-017-0636-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
494 Mousavi MF, Amiri M, Noori A, Khoshfetrat SM. A Prostate Specific Antigen Immunosensor Based on Biotinylated-Antibody/Cyclodextrin Inclusion Complex: Fabrication and Electrochemical Studies. Electroanalysis 2017;29:2818-31. [DOI: 10.1002/elan.201700363] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
495 Olmos Moya PM, Martínez Alfaro M, Kazemi R, Alpuche-avilés MA, Griveau S, Bedioui F, Gutiérrez Granados S. Simultaneous Electrochemical Speciation of Oxidized and Reduced Glutathione. Redox Profiling of Oxidative Stress in Biological Fluids with a Modified Carbon Electrode. Anal Chem 2017;89:10726-33. [DOI: 10.1021/acs.analchem.7b01690] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
496 Ferapontova EE. Basic concepts and recent advances in electrochemical analysis of nucleic acids. Current Opinion in Electrochemistry 2017;5:218-25. [DOI: 10.1016/j.coelec.2017.09.026] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
497 Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, Tian J, Khanh DP, Liu L, Chen P, Xu C. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Adv Mater 2017;29. [PMID: 28714117 DOI: 10.1002/adma.201702243] [Cited by in Crossref: 174] [Cited by in F6Publishing: 182] [Article Influence: 34.8] [Reference Citation Analysis]
498 Ciui B, Jambrec D, Sandulescu R, Cristea C. Bioelectrochemistry for miRNA detection. Current Opinion in Electrochemistry 2017;5:183-92. [DOI: 10.1016/j.coelec.2017.09.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
499 Diba FS, Kim S, Lee HJ. Electrochemical immunoassay for amyloid-beta 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Catalysis Today 2017;295:41-7. [DOI: 10.1016/j.cattod.2017.02.039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
500 Islam MN, Masud MK, Nguyen NT, Gopalan V, Alamri HR, Alothman ZA, Hossain MSA, Yamauchi Y, Lamd AK, Shiddiky MJA. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosens Bioelectron 2018;101:275-81. [PMID: 29096366 DOI: 10.1016/j.bios.2017.09.027] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
501 Sun X, Wan J, Qian K. Designed Microdevices for In Vitro Diagnostics. Small Methods 2017;1:1700196. [DOI: 10.1002/smtd.201700196] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
502 Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017;117:12942-3038. [DOI: 10.1021/acs.chemrev.7b00088] [Cited by in Crossref: 203] [Cited by in F6Publishing: 170] [Article Influence: 40.6] [Reference Citation Analysis]
503 Mahshid SS, Vallée-bélisle A, Kelley SO. Biomolecular Steric Hindrance Effects Are Enhanced on Nanostructured Microelectrodes. Anal Chem 2017;89:9751-7. [DOI: 10.1021/acs.analchem.7b01595] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
504 Zhao M, Ding L, Li H, Fan S, Chen S. A self-adjusting mechanism of schottky junction constructed by zero-bandgap graphene for highly efficient electrochemical biosensing. Electrochimica Acta 2017;247:306-13. [DOI: 10.1016/j.electacta.2017.07.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
505 Wang G, Xu Q, Liu L, Su X, Lin J, Xu G, Luo X. Mixed Self-Assembly of Polyethylene Glycol and Aptamer on Polydopamine Surface for Highly Sensitive and Low-Fouling Detection of Adenosine Triphosphate in Complex Media. ACS Appl Mater Interfaces 2017;9:31153-60. [DOI: 10.1021/acsami.7b09529] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 10.4] [Reference Citation Analysis]
506 de Oliveira RAG, Materon EM, Melendez ME, Carvalho AL, Faria RC. Disposable Microfluidic Immunoarray Device for Sensitive Breast Cancer Biomarker Detection. ACS Appl Mater Interfaces 2017;9:27433-40. [DOI: 10.1021/acsami.7b03350] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 8.2] [Reference Citation Analysis]
507 Shrestha BK, Ahmad R, Shrestha S, Park CH, Kim CS. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosensors and Bioelectronics 2017;94:686-93. [DOI: 10.1016/j.bios.2017.03.072] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 13.8] [Reference Citation Analysis]
508 Xu W, Fu K, Bohn PW. Electrochromic Sensor for Multiplex Detection of Metabolites Enabled by Closed Bipolar Electrode Coupling. ACS Sens 2017;2:1020-6. [PMID: 28750540 DOI: 10.1021/acssensors.7b00292] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
509 Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai Z, Peng H, Huang J, Hu Q, Bu W, Tian Y. An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O 2 in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angew Chem Int Ed 2017;56:10471-5. [DOI: 10.1002/anie.201705615] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 13.0] [Reference Citation Analysis]
510 Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai Z, Peng H, Huang J, Hu Q, Bu W, Tian Y. An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O 2 in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angew Chem 2017;129:10607-11. [DOI: 10.1002/ange.201705615] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
511 Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron 2018;99:156-62. [PMID: 28755608 DOI: 10.1016/j.bios.2017.07.043] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 11.6] [Reference Citation Analysis]
512 Kang C, Kang J, Lee NS, Yoon YH, Yang H. DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling. Anal Chem 2017;89:7974-80. [PMID: 28696095 DOI: 10.1021/acs.analchem.7b01223] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
513 Mohammadniaei M, Lee T, Yoon J, Lee D, Choi JW. Electrochemical nucleic acid detection based on parallel structural dsDNA/recombinant azurin hybrid. Biosens Bioelectron 2017;98:292-8. [PMID: 28697440 DOI: 10.1016/j.bios.2017.07.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
514 Akhtar MH, Hussain KK, Gurudatt NG, Shim YB. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor. Biosens Bioelectron 2017;98:364-70. [PMID: 28704785 DOI: 10.1016/j.bios.2017.07.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
515 da Silva LV, Lopes CB, da Silva WC, de Paiva YG, Silva FDADS, Lima PR, Kubota LT, Goulart MOF. Electropolymerization of ferulic acid on multi-walled carbon nanotubes modified glassy carbon electrode as a versatile platform for NADH, dopamine and epinephrine separate detection. Microchemical Journal 2017;133:460-7. [DOI: 10.1016/j.microc.2017.04.014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
516 Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017;11:5238-92. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Cited by in Crossref: 165] [Cited by in F6Publishing: 140] [Article Influence: 33.0] [Reference Citation Analysis]
517 Mahshid SS, Ricci F, Kelley SO, Vallée-Bélisle A. Electrochemical DNA-Based Immunoassay That Employs Steric Hindrance To Detect Small Molecules Directly in Whole Blood. ACS Sens 2017;2:718-23. [PMID: 28723122 DOI: 10.1021/acssensors.7b00176] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
518 Belicky S, Černocká H, Bertok T, Holazova A, Réblová K, Paleček E, Tkac J, Ostatná V. Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 2017;117:89-94. [PMID: 28651174 DOI: 10.1016/j.bioelechem.2017.06.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
519 Wu Y, Zou L, Lei S, Yu Q, Ye B. Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Biosens Bioelectron 2017;97:317-24. [PMID: 28622642 DOI: 10.1016/j.bios.2017.06.023] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
520 Islam MN, Masud MK, Haque MH, Hossain MSA, Yamauchi Y, Nguyen N, Shiddiky MJA. RNA Biomarkers: Diagnostic and Prognostic Potentials and Recent Developments of Electrochemical Biosensors. Small Methods 2017;1:1700131. [DOI: 10.1002/smtd.201700131] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 13.2] [Reference Citation Analysis]
521 Moya A, Gabriel G, Villa R, Javier del Campo F. Inkjet-printed electrochemical sensors. Current Opinion in Electrochemistry 2017;3:29-39. [DOI: 10.1016/j.coelec.2017.05.003] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 19.4] [Reference Citation Analysis]
522 Hasegawa Y, Takada T, Nakamura M, Yamana K. Ferrocene conjugated oligonucleotide for electrochemical detection of DNA base mismatch. Bioorg Med Chem Lett 2017;27:3555-7. [PMID: 28583799 DOI: 10.1016/j.bmcl.2017.05.049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
523 Yu X, Yu Z, Li F, Xu Y, He X, Xu L, Shi W, Zhang G, Yan H. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Biosensors and Bioelectronics 2017;91:817-23. [DOI: 10.1016/j.bios.2017.01.054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
524 Haque MH, Gopalan V, Islam MN, Masud MK, Bhattacharjee R, Hossain MSA, Nguyen NT, Lam AK, Shiddiky MJA. Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Anal Chim Acta 2017;976:84-93. [PMID: 28576321 DOI: 10.1016/j.aca.2017.04.034] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
525 Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 2017;133:11-9. [PMID: 28414975 DOI: 10.1016/j.biomaterials.2017.04.010] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 15.4] [Reference Citation Analysis]
526 Ruiz-vega G, Kitsara M, Pellitero MA, Baldrich E, del Campo FJ. Electrochemical Lateral Flow Devices: Towards Rapid Immunomagnetic Assays. ChemElectroChem 2017;4:880-9. [DOI: 10.1002/celc.201600902] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
527 Salimian R, Kékedy-nagy L, Ferapontova EE. Specific Picomolar Detection of a Breast Cancer Biomarker HER-2/ neu Protein in Serum: Electrocatalytically Amplified Electroanalysis by the Aptamer/PEG-Modified Electrode. ChemElectroChem 2017;4:872-9. [DOI: 10.1002/celc.201700025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
528 Shan J, Ma Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 2017;184:969-79. [DOI: 10.1007/s00604-017-2146-y] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
529 Kelley SO. What Are Clinically Relevant Levels of Cellular and Biomolecular Analytes? ACS Sens 2017;2:193-7. [PMID: 28723142 DOI: 10.1021/acssensors.6b00691] [Cited by in Crossref: 98] [Cited by in F6Publishing: 81] [Article Influence: 19.6] [Reference Citation Analysis]
530 Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017;94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 9.4] [Reference Citation Analysis]
531 Desrosiers A, Vallée-bélisle A. Nature-inspired DNA switches: applications in medicine. Nanomedicine 2017;12:175-9. [DOI: 10.2217/nnm-2016-0349] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
532 Zhang J, Xu C, Zhang D, Zhao J, Zheng S, Su H, Wei F, Yuan B, Fernandez C. Facile Synthesis of a Nickel Sulfide (NiS) Hierarchical Flower for the Electrochemical Oxidation of H 2 O 2 and the Methanol Oxidation Reaction (MOR). J Electrochem Soc 2017;164:B92-6. [DOI: 10.1149/2.0221704jes] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
533 Wen Z, Liang W, Zhuo Y, Xiong C, Zheng Y, Yuan R, Chai Y. An efficient target–intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions. Chem Commun 2017;53:7525-8. [DOI: 10.1039/c7cc04104g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
534 Zhu X, Li J, Lv H, He H, Liu H, Zhang X, Wang S. Synthesis and characterization of a bifunctional nanoprobe for CGG trinucleotide repeat detection. RSC Adv 2017;7:36124-31. [DOI: 10.1039/c7ra05268e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
535 Mills DM, Calvo-Marzal P, Pinzon JM, Armas S, Kolpashchikov DM, Chumbimuni-Torres KY. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences. Electroanalysis 2017;29:873-9. [PMID: 29371782 DOI: 10.1002/elan.201600548] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
536 Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol 2017;35:308-17. [PMID: 28277248 DOI: 10.1016/j.tibtech.2016.10.001] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
537 [DOI: 10.1101/2020.05.25.115675] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Reference Citation Analysis]