BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Agnew LR, Mcglone T, Wheatcroft HP, Robertson A, Parsons AR, Wilson CC. Continuous Crystallization of Paracetamol (Acetaminophen) Form II: Selective Access to a Metastable Solid Form. Crystal Growth & Design 2017;17:2418-27. [DOI: 10.1021/acs.cgd.6b01831] [Cited by in Crossref: 37] [Cited by in F6Publishing: 6] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Al-ani AJ, Herdes C, Wilson CC, Castro-dominguez B. Engineering a New Access Route to Metastable Polymorphs with Electrical Confinement. Crystal Growth & Design 2020;20:1451-7. [DOI: 10.1021/acs.cgd.9b01100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Thomas KM, Kwon S, Lakerveld R. Continuous Protein Crystallization in Mixed-Suspension Mixed-Product-Removal Crystallizers. Crystal Growth & Design 2021;21:757-69. [DOI: 10.1021/acs.cgd.0c00885] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
3 Briggs NEB, McGinty J, McCabe C, Raval V, Sefcik J, Florence AJ. Heat Transfer and Residence Time Distribution in Plug Flow Continuous Oscillatory Baffled Crystallizers. ACS Omega 2021;6:18352-63. [PMID: 34308066 DOI: 10.1021/acsomega.1c02215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ma Y, Wu S, Macaringue EGJ, Zhang T, Gong J, Wang J. Recent Progress in Continuous Crystallization of Pharmaceutical Products: Precise Preparation and Control. Org Process Res Dev 2020;24:1785-801. [DOI: 10.1021/acs.oprd.9b00362] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
5 Cruz P, Silva C, Rocha F, Ferreira A. The axial dispersion of liquid solutions and solid suspensions in planar oscillatory flow crystallizers. AIChE J 2019;65. [DOI: 10.1002/aic.16683] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Köllges T, Vetter T. Polymorph Selection and Process Intensification in a Continuous Crystallization–Milling Process: A Case Study on l -Glutamic Acid Crystallized from Water. Org Process Res Dev 2019;23:361-74. [DOI: 10.1021/acs.oprd.8b00420] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
7 Diab S, Gerogiorgis DI. Technoeconomic Optimization of Continuous Crystallization for Three Active Pharmaceutical Ingredients: Cyclosporine, Paracetamol, and Aliskiren. Ind Eng Chem Res 2018;57:9489-99. [DOI: 10.1021/acs.iecr.8b00679] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
8 Wood B, Girard KP, Polster CS, Croker DM. Progress to Date in the Design and Operation of Continuous Crystallization Processes for Pharmaceutical Applications. Org Process Res Dev 2019;23:122-44. [DOI: 10.1021/acs.oprd.8b00319] [Cited by in Crossref: 43] [Article Influence: 14.3] [Reference Citation Analysis]
9 Al-ani AJ, Sugden P, Wilson CC, Castro-dominguez B. Elusive Seed Formation via Electrical Confinement: Control of a Novel Cocrystal in Cooling Crystallization. Crystal Growth & Design 2021;21:3310-5. [DOI: 10.1021/acs.cgd.1c00085] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yeh KL, Lee T. Selective formation of form II paracetamol through the assistance of paracetamol co-crystals as templates in a solution. CrystEngComm 2021;23:3940-5. [DOI: 10.1039/d1ce00034a] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Shang H, Raimbault N, Rinke P, Scheffler M, Rossi M, Carbogno C. All-electron, real-space perturbation theory for homogeneous electric fields: theory, implementation, and application within DFT. New J Phys 2018;20:073040. [DOI: 10.1088/1367-2630/aace6d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
12 Cruz PC, Rocha FA, Ferreira AM. Application of Selective Crystallization Methods To Isolate the Metastable Polymorphs of Paracetamol: A Review. Org Process Res Dev 2019;23:2592-607. [DOI: 10.1021/acs.oprd.9b00322] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
13 Jiang M, Ni X. Reactive Crystallization of Paracetamol in a Continuous Oscillatory Baffled Reactor. Org Process Res Dev 2019;23:882-90. [DOI: 10.1021/acs.oprd.8b00446] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
14 Chattopadhyay B, Jacobs L, Panini P, Salzmann I, Resel R, Geerts Y. Accessing Phase-Pure and Stable Acetaminophen Polymorphs by Thermal Gradient Crystallization. Crystal Growth & Design 2018;18:1272-7. [DOI: 10.1021/acs.cgd.7b01661] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
15 Mcdonald MA, Salami H, Harris PR, Lagerman CE, Yang X, Bommarius AS, Grover MA, Rousseau RW. Reactive crystallization: a review. React Chem Eng 2021;6:364-400. [DOI: 10.1039/d0re00272k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
16 Nicoud L, Licordari F, Myerson AS. Estimation of the Solubility of Metastable Polymorphs: A Critical Review. Crystal Growth & Design 2018;18:7228-37. [DOI: 10.1021/acs.cgd.8b01200] [Cited by in Crossref: 38] [Article Influence: 9.5] [Reference Citation Analysis]
17 Onyemelukwe II, Parsons AR, Wheatcroft HP, Robertson A, Nagy ZK, Rielly CD. The Role of Residence Time Distribution in the Continuous Steady-State Mixed Suspension Mixed Product Removal Crystallization of Glycine. Crystal Growth & Design 2019;19:66-80. [DOI: 10.1021/acs.cgd.8b00853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
18 Hohmann L, Greinert T, Mierka O, Turek S, Schembecker G, Bayraktar E, Wohlgemuth K, Kockmann N. Analysis of Crystal Size Dispersion Effects in a Continuous Coiled Tubular Crystallizer: Experiments and Modeling. Crystal Growth & Design 2018;18:1459-73. [DOI: 10.1021/acs.cgd.7b01383] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
19 Nicoud L, Licordari F, Myerson AS. Polymorph Control in MSMPR Crystallizers. A Case Study with Paracetamol. Org Process Res Dev 2019;23:794-806. [DOI: 10.1021/acs.oprd.8b00351] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
20 Yeap EWQ, Ng DZL, Lai D, Ertl DJ, Sharpe S, Khan SA. Continuous Flow Droplet-Based Crystallization Platform for Producing Spherical Drug Microparticles. Org Process Res Dev 2019;23:93-101. [DOI: 10.1021/acs.oprd.8b00314] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
21 Ouyang J, Chen J, Chen W, Rosbottom I, Guo M, Heng JYY. Application of Phenyl-Functionalized Porous Silica for the Selective Crystallization of Carbamazepine Metastable Form II. Ind Eng Chem Res 2021;60:939-46. [DOI: 10.1021/acs.iecr.0c04906] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Jimeno G, Lee YC, Ni X. Smoothed particle hydrodynamics – A new approach for modeling flow in oscillatory baffled reactors. Computers & Chemical Engineering 2019;124:14-27. [DOI: 10.1016/j.compchemeng.2019.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
23 Liu Y, Gabriele B, Davey RJ, Cruz-cabeza AJ. Concerning Elusive Crystal Forms: The Case of Paracetamol. J Am Chem Soc 2020;142:6682-9. [DOI: 10.1021/jacs.0c00321] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
24 Avila M, Fletcher D, Poux M, Xuereb C, Aubin J. Predicting power consumption in continuous oscillatory baffled reactors. Chemical Engineering Science 2020;212:115310. [DOI: 10.1016/j.ces.2019.115310] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
25 Li Y, O’shea S, Yin Q, Vetter T. Polymorph Selection by Continuous Crystallization in the Presence of Wet Milling. Crystal Growth & Design 2019;19:2259-71. [DOI: 10.1021/acs.cgd.8b01894] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
26 Pallipurath AR, Flandrin P, Wayment LE, Wilson CC, Robertson K. In situ non-invasive Raman spectroscopic characterisation of succinic acid polymorphism during segmented flow crystallisation. Mol Syst Des Eng 2020;5:294-303. [DOI: 10.1039/c9me00103d] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zhang D, Wang X, Ulrich J, Tang W, Xu S, Li Z, Rohani S, Gong J. Control of Crystal Properties in a Mixed-Suspension Mixed-Product Removal Crystallizer: General Methods and the Effects of Secondary Nucleation. Crystal Growth & Design 2019;19:3070-84. [DOI: 10.1021/acs.cgd.8b01530] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
28 Cruz P, Alvarez C, Rocha F, Ferreira A. Tailoring the crystal size distribution of an active pharmaceutical ingredient by continuous antisolvent crystallization in a planar oscillatory flow crystallizer. Chemical Engineering Research and Design 2021;175:115-23. [DOI: 10.1016/j.cherd.2021.08.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Okafor O, Robertson K, Goodridge R, Sans V. Continuous-flow crystallisation in 3D-printed compact devices. React Chem Eng 2019;4:1682-8. [DOI: 10.1039/c9re00188c] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]