BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019;30:2247-63. [PMID: 31408324 DOI: 10.1021/acs.bioconjchem.9b00448] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Lu Z, Xu G, Yang X, Liu S, Sun Y, Chen L, Liu Q, Liu J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int J Mol Sci 2022;23. [PMID: 36555298 DOI: 10.3390/ijms232415656] [Reference Citation Analysis]
2 Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. Adv Photonics Res 2022;3:2200098. [PMID: 36686152 DOI: 10.1002/adpr.202200098] [Reference Citation Analysis]
3 Liwinska W, Waleka-Bagiel E, Stojek Z, Karbarz M, Zabost E. Enzyme-triggered- and tumor-targeted delivery with tunable, methacrylated poly(ethylene glycols) and hyaluronic acid hybrid nanogels. Drug Deliv 2022;29:2561-78. [PMID: 35938558 DOI: 10.1080/10717544.2022.2105443] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Habeeb M, Kareem TA, Deepthi KL, Khot VS, Woon YH, Pawar SS. Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. Journal of Drug Delivery Science and Technology 2022;77:103865. [DOI: 10.1016/j.jddst.2022.103865] [Reference Citation Analysis]
5 John Newton Amaldoss M, Pandzic E, Koshy P, Kumar N, Sorrell CC, Unnikrishnan A. Detection and Quantification of Nanoparticle-Induced Intracellular ROS in Live Cells by Laser Scanning Confocal Microscopy. Methods 2022:S1046-2023(22)00175-X. [PMID: 36028162 DOI: 10.1016/j.ymeth.2022.08.005] [Reference Citation Analysis]
6 Das R, Hardie J, Joshi BP, Zhang X, Gupta A, Luther DC, Fedeli S, Farkas ME, Rotello VM. Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells. JACS Au 2022;2:1679-1685. [DOI: 10.1021/jacsau.2c00247] [Reference Citation Analysis]
7 Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. IJMS 2022;23:7683. [DOI: 10.3390/ijms23147683] [Reference Citation Analysis]
8 Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, Zhang X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. Small 2022;:e2202035. [PMID: 35762403 DOI: 10.1002/smll.202202035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Zhu L, Meng D, Wang X, Chen X. Ferroptosis-Driven Nanotherapeutics to Reverse Drug Resistance in Tumor Microenvironment. ACS Appl Bio Mater 2022. [PMID: 35614872 DOI: 10.1021/acsabm.2c00199] [Reference Citation Analysis]
10 Xu M, Zhang J, Mu Y, Foda MF, Han H. Activation of TRPV1 by capsaicin-loaded CaCO3 nanoparticle for tumor-specific therapy. Biomaterials 2022;284:121520. [DOI: 10.1016/j.biomaterials.2022.121520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, Zhang X, Tian G, Bian XW. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater 2022;141:364-73. [PMID: 35063709 DOI: 10.1016/j.actbio.2022.01.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022;10:847433. [DOI: 10.3389/fbioe.2022.847433] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Zhang Y, Elechalawar CK, Yang W, Frickenstein AN, Asfa S, Fung K, Murphy BN, Dwivedi SK, Rao G, Dey A, Wilhelm S, Bhattacharya R, Mukherjee P. Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.01.025] [Reference Citation Analysis]
15 Liu W, Yin SY, Hu Y, Deng T, Li J. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H2O2 Dual-Responsive T2-T1 Switchable MRI. ACS Appl Mater Interfaces 2022;14:2629-37. [PMID: 35000378 DOI: 10.1021/acsami.1c22747] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Foglietta F, Serpe L, Canaparo R. The Effective Combination between 3D Cancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells 2021;10:3295. [PMID: 34943803 DOI: 10.3390/cells10123295] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Adhipandito CF, Cheung SH, Lin YH, Wu SH. Atypical Renal Clearance of Nanoparticles Larger Than the Kidney Filtration Threshold. Int J Mol Sci 2021;22:11182. [PMID: 34681853 DOI: 10.3390/ijms222011182] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
18 Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021;22:10009. [PMID: 34576180 DOI: 10.3390/ijms221810009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
19 Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021;176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
20 Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. Nano Converg 2021;8:20. [PMID: 34236537 DOI: 10.1186/s40580-021-00270-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
21 Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 2021:S1044-579X(21)00190-5. [PMID: 34182143 DOI: 10.1016/j.semcancer.2021.06.020] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
22 Nagesetti A, Dulikravich GS, Orlande HRB, Colaco MJ, McGoron AJ. Computational model of silica nanoparticle penetration into tumor spheroids: Effects of methoxy and carboxy PEG surface functionalization and hyperthermia. Int J Numer Method Biomed Eng 2021;37:e3504. [PMID: 34151543 DOI: 10.1002/cnm.3504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Mendes BB, Sousa DP, Conniot J, Conde J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 2021;7:847-62. [PMID: 34090865 DOI: 10.1016/j.trecan.2021.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
24 Meng X, Yang F, Dong H, Dou L, Zhang X. Recent advances in optical imaging of biomarkers in vivo. Nano Today 2021;38:101156. [DOI: 10.1016/j.nantod.2021.101156] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
25 Zhang X, Falagan-Lotsch P, Murphy CJ. Nanoparticles Interfere with Chemotaxis: An Example of Nanoparticles as Molecular "Knockouts" at the Cellular Level. ACS Nano 2021;15:8813-25. [PMID: 33886273 DOI: 10.1021/acsnano.1c01262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Silveira MJ, Castro F, Oliveira MJ, Sarmento B. Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored? Biomater Sci 2021;9:3228-43. [PMID: 33949441 DOI: 10.1039/d1bm00137j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Yang G, Ji J, Liu Z. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1720. [PMID: 33908171 DOI: 10.1002/wnan.1720] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
28 Xie X, Wang J, Zhang L, Zeng S, Su X, Chen Q. Bioresorbable Depot for Sustained Release of Immunostimulatory Resiquimod in Suppressing Both Primary Triple-Negative Breast Tumors and Metastatic Occurrence. Bioconjug Chem 2021;32:1008-16. [PMID: 33882675 DOI: 10.1021/acs.bioconjchem.1c00171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Sabir F, Qindeel M, Zeeshan M, Ul Ain Q, Rahdar A, Barani M, González E, Aboudzadeh MA. Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes 2021;9:621. [DOI: 10.3390/pr9040621] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
30 Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021;10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
31 Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021;12:230-50. [PMID: 33613850 DOI: 10.18632/oncotarget.27870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Yang Y, Wang H. Recent progress in nanophotosensitizers for advanced photodynamic therapy of cancer. J Phys Mater 2021;4:014003. [DOI: 10.1088/2515-7639/abc9ce] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020;63:15279-307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
34 Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020;7:587012. [PMID: 33324678 DOI: 10.3389/fmolb.2020.587012] [Cited by in Crossref: 79] [Cited by in F6Publishing: 88] [Article Influence: 26.3] [Reference Citation Analysis]
35 Heyder RS, Sunbul FS, Almuqbil RM, Fines CB, da Rocha SRP. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 2021;330:1178-90. [PMID: 33212118 DOI: 10.1016/j.jconrel.2020.11.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
36 Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Adv Funct Mater 2021;31:2007363. [DOI: 10.1002/adfm.202007363] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
37 Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. Materials (Basel) 2020;13:E4946. [PMID: 33158060 DOI: 10.3390/ma13214946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
38 Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020;326:203-21. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
39 Lee JC, Donahue ND, Mao AS, Karim A, Komarneni M, Thomas EE, Francek ER, Yang W, Wilhelm S. Exploring Maleimide-Based Nanoparticle Surface Engineering to Control Cellular Interactions. ACS Appl Nano Mater 2020;3:2421-9. [DOI: 10.1021/acsanm.9b02541] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
40 Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00004-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
41 Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019;11:E1855. [PMID: 31769416 DOI: 10.3390/cancers11121855] [Cited by in Crossref: 98] [Cited by in F6Publishing: 106] [Article Influence: 24.5] [Reference Citation Analysis]
42 Wallyn J, Anton N, Vandamme TF. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics 2019;11:E601. [PMID: 31726769 DOI: 10.3390/pharmaceutics11110601] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 21.0] [Reference Citation Analysis]
43 Komatsu A, Higashi Y, Matsumoto K. Various CAM tumor models. Chick Chorioallantoic Membrane Model and Precision Cancer Therapy. Elsevier; 2019. pp. 37-57. [DOI: 10.1016/bs.enz.2019.10.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]