BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. TrAC Trends in Analytical Chemistry 2018;105:52-67. [DOI: 10.1016/j.trac.2018.04.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 45] [Article Influence: 13.2] [Reference Citation Analysis]
Number Citing Articles
1 Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023;226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Reference Citation Analysis]
2 Moreno-bondi MC, Benito-peña E, Moya-cavas TD, Ruiz JU. Molecularly Imprinted Polymer-Based Biomimetic Sensors for Food Analysis. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00105-9] [Reference Citation Analysis]
3 Kalambate PK, Larpant N, Kalambate RP, Niamsi W, Primpray V, Karuwan C, Laiwattanapaisal W. A portable smartphone-compatible ratiometric electrochemical sensor with ultrahigh sensitivity for anticancer drug mitoxantrone sensing. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133103] [Reference Citation Analysis]
4 Wang X, Liu Y, Liu J, Qu J, Huang J, Tan R, Yu Y, Wu J, Yang J, Li Y, Qu H, Liu J. A bifunctional electrochemical sensor for simultaneous determination of electroactive and non-electroactive analytes: A universal yet very effective platform serving therapeutic drug monitoring. Biosensors and Bioelectronics 2022;208:114233. [DOI: 10.1016/j.bios.2022.114233] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Dykstra G, Reynolds B, Smith R, Zhou K, Liu Y. Electropolymerized Molecularly Imprinted Polymer Synthesis Guided by an Integrated Data-Driven Framework for Cortisol Detection. ACS Appl Mater Interfaces 2022;14:25972-83. [PMID: 35536156 DOI: 10.1021/acsami.2c02474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Huang Y, Ye D, Yang J, Lu H, Li L, Ding Y. A novel dual-signal molecularly imprinted electrochemical sensor based on NiFe prussian blue analogue and SnS2 for detection of p-Hydroxyacetophenone. Chemical Engineering Journal 2022;435:134981. [DOI: 10.1016/j.cej.2022.134981] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Jahangiri-manesh A, Mousazadeh M, Nikkhah M. Fabrication of chemiresistive nanosensor using molecularly imprinted polymers for acetone detection in gaseous state. Iran Polym J. [DOI: 10.1007/s13726-022-01044-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Liu G, Ling J, Xie H, Li J. Ultrasensitive molecularly imprinted electrochemiluminescence sensor based on enzyme-encapsulated liposome-linked signal amplification for trace analysis. Sensors and Actuators B: Chemical 2022;355:131263. [DOI: 10.1016/j.snb.2021.131263] [Reference Citation Analysis]
9 Tian J, Qin L, Li D, Qin S, Gao W, Jia Y. Carbofuran-imprinted sensor based on a modified electrode and prepared via combined multiple technologies: Preparation process, performance evaluation, and application. Electrochimica Acta 2022;404:139600. [DOI: 10.1016/j.electacta.2021.139600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116573] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
11 Ma M, Zhang Y, Liu J. Adsorption of 4,4'-diaminodiphenyl ether on molecularly imprinted polymer and its application in an interfacial potentiometry with double poles sensor. Chem Pap . [DOI: 10.1007/s11696-021-01979-z] [Reference Citation Analysis]
12 Yu C, Li N, Zhang R, Xie D, Li F, Cao Q. Reduced Graphene Oxide/Poly(2-Aminopyridine) Modified Molecularly Imprinted Glassy Carbon Electrode (GCE) for the Determination of Kanamycin in Milk and Pork by Differential Pulse Voltammetry (DPV). Analytical Letters. [DOI: 10.1080/00032719.2022.2027431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang D, Jiang S, Liang Y, Wang X, Zhuang X, Tian C, Luan F, Chen L. Selective detection of enrofloxacin in biological and environmental samples using a molecularly imprinted electrochemiluminescence sensor based on functionalized copper nanoclusters. Talanta 2022;236:122835. [PMID: 34635225 DOI: 10.1016/j.talanta.2021.122835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
14 Sala A, Brisset H, Margaillan A, Mullot J, Branger C. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Liang J, Yan F, Jiang C, Xie L, Wang Y, Li T, Zheng L, Wang J, Ning D, Tang L, Ya Y. In situ one-step electrochemical preparation of mesoporous molecularly imprinted sensor for efficient determination of indole-3-acetic acid. Journal of Electroanalytical Chemistry 2022;905:116000. [DOI: 10.1016/j.jelechem.2021.116000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu G, Ling J, Li J. Extremely Sensitive Molecularly Imprinted ECL Sensor with Multiple Probes Released from Liposomes Immobilized by a Light-Triggered Click Reaction. ACS Sens 2021;6:4185-92. [PMID: 34662113 DOI: 10.1021/acssensors.1c01763] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Li X, Xu M, Wu Q, Wei W, Liu X. Photolithographic 3D microarray electrode-based high-performance non-enzymatic H2O2 sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127249. [DOI: 10.1016/j.colsurfa.2021.127249] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Maziz A, Özgür E, Bergaud C, Uzun L. Progress in conducting polymers for biointerfacing and biorecognition applications. Sensors and Actuators Reports 2021;3:100035. [DOI: 10.1016/j.snr.2021.100035] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
19 Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021;185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
20 Mpupa A, Selahle SK, Mizaikoff B, Nomngongo PN. Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors 2021;9:151. [DOI: 10.3390/chemosensors9070151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
21 Gao L, Gao E. Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coordination Chemistry Reviews 2021;434:213784. [DOI: 10.1016/j.ccr.2021.213784] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
22 Pesavento M, Merli D, Biesuz R, Alberti G, Marchetti S, Milanese C. A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages. Anal Chim Acta 2021;1142:201-10. [PMID: 33280698 DOI: 10.1016/j.aca.2020.10.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
23 Tong P, Li M, Meng Y, Li J. Molecularly imprinted polymer composites in biological analysis. Molecularly Imprinted Polymer Composites 2021. [DOI: 10.1016/b978-0-12-819952-7.00001-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Mortari B, Zeb S, Pupin RR, Khan S, Wong A, Sotomayor MDPT. Molecularly imprinted polymer composites as sensor. Molecularly Imprinted Polymer Composites 2021. [DOI: 10.1016/b978-0-12-819952-7.00012-3] [Reference Citation Analysis]
25 Özgür E. Molecularly Imprinted Electrochemical Sensors and Their Applications. Molecular Imprinting for Nanosensors and Other Sensing Applications 2021. [DOI: 10.1016/b978-0-12-822117-4.00008-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnology Advances 2020;45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
27 Xie H, Yang B, Li J. A Molecularly Imprinted Electrochemical Luminescence Sensor for Detection of Gibberellin Based on Energy Transfer. Chinese Journal of Analytical Chemistry 2020;48:1633-41. [DOI: 10.1016/s1872-2040(20)60065-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wang J, Chen X, Wang X, Kang Q, Shen D, Chen L. Enhancing anti-interference ability of molecularly imprinted ratiometric fluorescence sensor via differential strategy demonstrated by the detection of bovine hemoglobin. Sensors and Actuators B: Chemical 2020;322:128581. [DOI: 10.1016/j.snb.2020.128581] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhang L, Luo K, Li D, Zhang Y, Zeng Y, Li J. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal Chim Acta 2020;1136:82-90. [PMID: 33081952 DOI: 10.1016/j.aca.2020.08.046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Li Y, Zhang S, Li N, Wang J, Jin C, Zheng L, Cao Q. A highly sensitive and selective molecularly imprinted electrochemical sensor modified with TiO2-reduced graphene oxide nanocomposite for determination of podophyllotoxin in real samples. Journal of Electroanalytical Chemistry 2020;873:114439. [DOI: 10.1016/j.jelechem.2020.114439] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mahmoudpour M, Torbati M, Mousavi M, de la Guardia M, Ezzati Nazhad Dolatabadi J. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020;129:115943. [DOI: 10.1016/j.trac.2020.115943] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
32 Zhang R, Zhan J, Xu J, Chai J, Zhang Z, Sun A, Chen J, Shi X. Application of a novel electrochemiluminescence sensor based on magnetic glassy carbon electrode modified with molecularly imprinted polymers for sensitive monitoring of bisphenol A in seawater and fish samples. Sensors and Actuators B: Chemical 2020;317:128237. [DOI: 10.1016/j.snb.2020.128237] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
33 Nagy-Szakolczai A, Sváb-Kovács A, Krezinger A, Tóth B, Nyulászi L, Horvai G. The molecular imprinting effect of propranolol and dibenzylamine as model templates: Binding strength and selectivity. Anal Chim Acta 2020;1125:258-66. [PMID: 32674772 DOI: 10.1016/j.aca.2020.05.066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Ma X, Li M, Tong P, Zhao C, Li J, Xu G. A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule. Biosensors and Bioelectronics 2020;156:112150. [DOI: 10.1016/j.bios.2020.112150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
35 Hussain CM, Keçili R. Electrochemical techniques for environmental analysis. Modern Environmental Analysis Techniques for Pollutants 2020. [DOI: 10.1016/b978-0-12-816934-6.00008-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
36 Mohseni E, Yaftian MR, Shayani-jam H, Zamani A, Piri F. Molecularly imprinted poly (4,4′-methylenedianiline) as electrochemical sensor for determination of 1-benzothiophene. Synthetic Metals 2020;259:116252. [DOI: 10.1016/j.synthmet.2019.116252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
37 Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. Adv Mater 2019;31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 19.3] [Reference Citation Analysis]
38 Yang S, Bai C, Teng Y, Zhang J, Peng J, Fang Z, Xu W. Study of horseradish peroxidase and hydrogen peroxide bi-analyte sensor with boronate affinity-based molecularly imprinted film. Can J Chem 2019;97:833-9. [DOI: 10.1139/cjc-2019-0134] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
39 Liang A, Tang B, Hou H, Sun L, Luo A. A novel CuFe2O4 nanospheres molecularly imprinted polymers modified electrochemical sensor for lysozyme determination. Journal of Electroanalytical Chemistry 2019;853:113465. [DOI: 10.1016/j.jelechem.2019.113465] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
40 Rubio L, Guerra E, Garcia-jares C, Lores M. Body-decorating products: Ingredients of permanent and temporary tattoos from analytical and european regulatory perspectives. Analytica Chimica Acta 2019;1079:59-72. [DOI: 10.1016/j.aca.2019.06.052] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
41 Qi J, Li B, Zhou N, Wang X, Deng D, Luo L, Chen L. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosensors and Bioelectronics 2019;142:111533. [DOI: 10.1016/j.bios.2019.111533] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 21.8] [Reference Citation Analysis]
42 Moro G, Bottari F, Sleegers N, Florea A, Cowen T, Moretto LM, Piletsky S, De Wael K. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome. Sensors and Actuators B: Chemical 2019;297:126786. [DOI: 10.1016/j.snb.2019.126786] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
43 Kantize K, Booysen IN, Mambanda A. Electrochemical sensing of acetaminophen using nanocomposites comprised of cobalt phthalocyanines and multiwalled carbon nanotubes. Journal of Electroanalytical Chemistry 2019;850:113391. [DOI: 10.1016/j.jelechem.2019.113391] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
44 Kumar A, Singh P, Prakash R. Enzymatic Electrode–Electrolyte Interface Study During Electrochemical Sensing of Biomolecules. Bioelectrochemical Interface Engineering 2019. [DOI: 10.1002/9781119611103.ch23] [Reference Citation Analysis]
45 Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. TrAC Trends in Analytical Chemistry 2019;118:123-37. [DOI: 10.1016/j.trac.2019.05.034] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
46 Yin N, Yang Z, Cai D. Carbon Nanotube Facilitated Interface Formation for Enhanced Protein Sensing in Electrosynthesized Molecular Imprinting. ACS Appl Bio Mater 2019;2:4604-11. [DOI: 10.1021/acsabm.9b00692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
47 Florea A, Cowen T, Piletsky S, De Wael K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst 2019;144:4639-46. [PMID: 31250860 DOI: 10.1039/c9an00618d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
48 Kubiak A, Biesaga M. Application of Molecularly Imprinted Polymers for Bisphenols Extraction from Food Samples – A Review. Critical Reviews in Analytical Chemistry 2020;50:311-21. [DOI: 10.1080/10408347.2019.1626698] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
49 Peng P, Liao L, Yu Z, Jiang M, Deng J, Xiao X. A novel sensor based on multi-walled carbon nanotubes and boron-doped double-layer molecularly imprinted membrane for the analysis of SCZ in pharmaceutical and biological samples. International Journal of Environmental Analytical Chemistry 2019;99:1495-514. [DOI: 10.1080/03067319.2019.1622697] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Ding M, Ding S, Guan P, Qian L, Du C, Hu X. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol Rapid Commun 2019;40:e1900096. [PMID: 31111979 DOI: 10.1002/marc.201900096] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]
51 Yu R, Zhou H, Li M, Song Q. Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. Journal of Electroanalytical Chemistry 2019;832:129-36. [DOI: 10.1016/j.jelechem.2018.10.043] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
52 Gui R, Guo H, Jin H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Adv 2019;1:3325-63. [DOI: 10.1039/c9na00455f] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
53 Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. Electroanalysis 2019;31:188-201. [DOI: 10.1002/elan.201800623] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 16.8] [Reference Citation Analysis]
54 Yang W, Muhammad T, Yigaimu A, Muhammad K, Chen L. Preparation of stoichiometric molecularly imprinted polymer coatings on magnetic particles for the selective extraction of auramine O from water. J Sep Sci 2018;41:4185-93. [DOI: 10.1002/jssc.201800797] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]