BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lan W, Chen Z, Chen Y, Tan M, Chen Y, Chen J, Chi X, Chen Y. Glycochenodeoxycholic acid impairs transcription factor E3 -dependent autophagy-lysosome machinery by disrupting reactive oxygen species homeostasis in L02 cells. Toxicol Lett 2020;331:11-21. [PMID: 32439580 DOI: 10.1016/j.toxlet.2020.05.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Kaur KK, K. Allahbadia GN, Singh M. Mode of Actions of Bile Acids in Avoidance of Colorectal Cancer Development; and their Therapeutic Applications in Cancers - A Narrative Review. J Pharm Nutr Sci 2022;12:35-53. [DOI: 10.29169/1927-5951.2022.12.04] [Reference Citation Analysis]
2 Zhao N, Zhang X, Ding J, Pan Q, Zheng M, Liu W, Luo G, Qu J, Li M, Li L, Cheng Y, Peng Y, Xie Q, Wei Q, Li Q, Zou L, Ouyang X, Cai S, Boyer JL, Chai J. SEMA7AR148W mutation promotes lipid accumulation and NAFLD progression via increased localization on the hepatocyte surface. JCI Insight 2022;7:e154113. [DOI: 10.1172/jci.insight.154113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. IJMS 2022;23:7184. [DOI: 10.3390/ijms23137184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. Journal of Dairy Science 2022. [DOI: 10.3168/jds.2021-20892] [Reference Citation Analysis]
5 Xie AJ, Mai CT, Zhu YZ, Liu XC, Xie Y. Bile acids as regulatory molecules and potential targets in metabolic diseases. Life Sci 2021;287:120152. [PMID: 34793769 DOI: 10.1016/j.lfs.2021.120152] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Pan Q, Luo G, Qu J, Chen S, Zhang X, Zhao N, Ding J, Yang H, Li M, Li L, Cheng Y, Li X, Xie Q, Li Q, Zhou X, Zou H, Fan S, Zou L, Liu W, Deng G, Cai SY, Boyer JL, Chai J. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis. EMBO Mol Med 2021;13:e14563. [PMID: 34585848 DOI: 10.15252/emmm.202114563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Chen SS, Huang Y, Guo YM, Li SS, Shi Z, Niu M, Zou ZS, Xiao XH, Wang JB. Serum Metabolomic Analysis of Chronic Drug-Induced Liver Injury With or Without Cirrhosis. Front Med (Lausanne) 2021;8:640799. [PMID: 33855035 DOI: 10.3389/fmed.2021.640799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Panzitt K, Fickert P, Wagner M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochim Biophys Acta Mol Basis Dis 2021;1867:166017. [PMID: 33242590 DOI: 10.1016/j.bbadis.2020.166017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]