BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, Yin Y, Ding S, Ju H. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 2012;93:433-8. [DOI: 10.1016/j.talanta.2012.02.047] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Sadrjavadi K, Taran M, Fattahi A, Khoshroo A. A microelectrode system for simple measurement of neuron specific enolase with photolithography technique. Microchemical Journal 2022;182:107889. [DOI: 10.1016/j.microc.2022.107889] [Reference Citation Analysis]
2 Yi R, Li Y, Wang S, Liu Q, Dong H, Liu S, Li Y. A Neuron-specific Enolase Electrochemical Immunosensor Based on rGO/Cu 8 Ni 2 Nanocomposite with Enhanced Catalytic Activity. J Electrochem Soc 2022;169:067509. [DOI: 10.1149/1945-7111/ac7a61] [Reference Citation Analysis]
3 Karaman C, Bölükbaşı ÖS, Yola BB, Karaman O, Atar N, Yola ML. Electrochemical neuron-specific enolase (NSE) immunosensor based on CoFe2O4@Ag nanocomposite and AuNPs@MoS2/rGO. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339609] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 18.0] [Reference Citation Analysis]
4 Huang X, Miao J, Fang J, Xu X, Wei Q, Cao W. Ratiometric Electrochemical Immunosensor Based on L-cysteine Grafted Ferrocene for Detection of Neuron Specific Enolase. Talanta 2021;:123075. [PMID: 34809982 DOI: 10.1016/j.talanta.2021.123075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu R, Wang Y, Wong W, Li H, Li C. Photoelectrochemical immunoassay platform based on MoS2 nanosheets integrated with gold nanostars for neuron-specific enolase assay. Mikrochim Acta 2020;187:480. [PMID: 32743701 DOI: 10.1007/s00604-020-04411-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
6 Kalkal A, Pradhan R, Kadian S, Manik G, Packirisamy G. Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl Bio Mater 2020;3:4922-32. [DOI: 10.1021/acsabm.0c00427] [Cited by in Crossref: 18] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
7 Wang L, Zhang L, Wang Y, Ou Y, Wang X, Pan Y, Wang Y, Huang L, Cheng G, Xie S, Chen D, Tao Y. Construction of an Electrochemical Receptor Sensor Based on Graphene/Thionine for the Sensitive Determination of β-Lactam Antibiotics Content in Milk. Int J Mol Sci 2020;21:E3306. [PMID: 32392795 DOI: 10.3390/ijms21093306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
8 Drzazgowska J, Schmid B, Süssmuth RD, Altintas Z. Self-Assembled Monolayer Epitope Bridges for Molecular Imprinting and Cancer Biomarker Sensing. Anal Chem 2020;92:4798-806. [DOI: 10.1021/acs.analchem.9b03813] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 10.5] [Reference Citation Analysis]
9 Yang H, Xu W, Liang X, Yang Y, Zhou Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-4172-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
10 Ma E, Wang P, Yang Q, Yu H, Pei F, Zheng Y, Liu Q, Dong Y, Li Y. Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO 2 Nanosheets as Signal Labels. ACS Biomater Sci Eng 2020;6:1418-27. [DOI: 10.1021/acsbiomaterials.9b01882] [Cited by in Crossref: 13] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
11 Soomro RA, Kalwar NH, Avci A, Pehlivan E, Hallam KR, Willander M. In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase. Biosensors and Bioelectronics 2019;141:111331. [DOI: 10.1016/j.bios.2019.111331] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
12 Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020;206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Cited by in Crossref: 69] [Cited by in F6Publishing: 105] [Article Influence: 23.0] [Reference Citation Analysis]
13 Aydın M, Aydın EB, Sezgintürk MK. A Highly Selective Poly(thiophene)‐graft‐Poly(methacrylamide) Polymer Modified ITO Electrode for Neuron Specific Enolase Detection in Human Serum. Macromol Biosci 2019;19:1900109. [DOI: 10.1002/mabi.201900109] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Fang Y, Li Y, Zhang M, Cui B, Hu Q, Wang L. A novel electrochemical strategy based on porous 3D graphene-starch architecture and silver deposition for ultrasensitive detection of neuron-specific enolase. Analyst 2019;144:2186-94. [DOI: 10.1039/c8an02230e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
15 Wang Y, Zhang L, Peng D, Xie S, Chen D, Pan Y, Tao Y, Yuan Z. Construction of Electrochemical Immunosensor Based on Gold-Nanoparticles/Carbon Nanotubes/Chitosan for Sensitive Determination of T-2 Toxin in Feed and Swine Meat. Int J Mol Sci 2018;19:E3895. [PMID: 30563124 DOI: 10.3390/ijms19123895] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
16 He J, Tian J, Xu J, Wang K, Li J, Gee SJ, Hammock BD, Li QX, Xu T. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Anal Bioanal Chem 2018;410:6633-42. [PMID: 30066195 DOI: 10.1007/s00216-018-1270-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
17 Freitas M, Nouws HPA, Delerue-matos C. Electrochemical Biosensing in Cancer Diagnostics and Follow-up. Electroanalysis 2018;30:1584-603. [DOI: 10.1002/elan.201800193] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
18 Gao X, Zheng P, Kasani S, Wu S, Yang F, Lewis S, Nayeem S, Engler-Chiurazzi EB, Wigginton JG, Simpkins JW, Wu N. Paper-Based Surface-Enhanced Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific Enolase in Blood Plasma. Anal Chem 2017;89:10104-10. [PMID: 28817769 DOI: 10.1021/acs.analchem.7b03015] [Cited by in Crossref: 89] [Cited by in F6Publishing: 102] [Article Influence: 17.8] [Reference Citation Analysis]
19 Zeng K, Li H, Peng Y. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 2017;184:2637-44. [DOI: 10.1007/s00604-017-2276-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
20 Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers. Diagnostics (Basel) 2016;7:E2. [PMID: 28035946 DOI: 10.3390/diagnostics7010002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ko JA, Lim H. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay. Analytica Chimica Acta 2016;938:1-6. [DOI: 10.1016/j.aca.2016.07.035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
22 Qing Y, Li C, Yang X, Zhou X, Xue J, Luo M, Xu X, Chen S, Qiu J. Electrochemical immunosensor using single-walled carbon nanotubes/chitosan for ultrasensitive detection of deoxynivalenol in food samples. J Appl Electrochem 2016;46:1049-57. [DOI: 10.1007/s10800-016-0984-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
23 Li X, Fu H, He Y, Zhai Q, Guo J, Qing K, Yi G. Electrochemical Aptasensor for Rapid and Sensitive Determination of Salmonella Based on Target-Induced Strand Displacement and Gold Nanoparticle Amplification. Analytical Letters 2016;49:2405-17. [DOI: 10.1080/00032719.2016.1151888] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Yang X, Zhou X, Zhang X, Qing Y, Luo M, Liu X, Li C, Li Y, Xia H, Qiu J. A Highly Sensitive Electrochemical Immunosensor for Fumonisin B 1 Detection in Corn Using Single-Walled Carbon Nanotubes/Chitosan. Electroanalysis 2015;27:2679-87. [DOI: 10.1002/elan.201500169] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.9] [Reference Citation Analysis]
25 Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015;132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Cited by in Crossref: 119] [Cited by in F6Publishing: 105] [Article Influence: 17.0] [Reference Citation Analysis]
26 Gao H, Gan N, Pan D, Chen Y, Li T, Cao Y, Fu T. A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nano-peroxidase-polymer. Anal Methods 2015;7:6528-36. [DOI: 10.1039/c5ay01379h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
27 Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Analytica Chimica Acta 2014;846:44-50. [DOI: 10.1016/j.aca.2014.07.024] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 6.8] [Reference Citation Analysis]
28 Chumyim P, Rijiravanich P, Somasundrum M, Surareungchai W. Tyrosinase Multilayer-Functionalised Carbon Nanotubes as Electrochemical Labels: Application To Immunoassay. BioNanoSci 2014;4:240-50. [DOI: 10.1007/s12668-014-0144-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
29 Zhang L, Li C, Zhao D, Wu T, Nie G. An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly(5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Microchim Acta 2014;181:1601-8. [DOI: 10.1007/s00604-014-1313-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
30 Luo R, Li Y, Lin X, Dong F, Zhang W, Yan L, Cheng W, Ju H, Ding S. A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors and Actuators B: Chemical 2014;198:87-93. [DOI: 10.1016/j.snb.2014.02.104] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
31 Stefan-van Staden R, Comnea IR, van Staden JF, Stanciu Gavan C. Stochastic microsensors as screening tools for neuron specific enolase. RSC Adv 2014;4:26383-8. [DOI: 10.1039/c4ra03804e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
32 Li L, Lin R, He H, Sun M, Jiang L, Gao M. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods. Journal of Luminescence 2014;145:125-31. [DOI: 10.1016/j.jlumin.2013.07.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li J, Liu G, Zhang W, Cheng W, Xu H, Ding S. Competitive detection of pregnancy-associated plasma protein-A in serum using functional single walled carbon nanotubes/chitosan-based electrochemical immunosensor. Journal of Electroanalytical Chemistry 2013;708:95-100. [DOI: 10.1016/j.jelechem.2013.09.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
34 Liu QL, Yan XH, Yin XM, Situ B, Zhou HK, Lin L, Li B, Gan N, Zheng L. Electrochemical enzyme-linked immunosorbent assay (ELISA) for α-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. Molecules 2013;18:12675-86. [PMID: 24129276 DOI: 10.3390/molecules181012675] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
35 Su M, Zhang Y, Song X, Ge S, Yan M, Yu J, Huang J. Three-dimensional nanoflower-like MnO2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay. Electrochimica Acta 2013;97:333-40. [DOI: 10.1016/j.electacta.2013.02.110] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
36 Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal Methods 2013;5:1328. [DOI: 10.1039/c2ay26485d] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
37 Wang Y, Li M, Zhu Y, Ge S, Yu J, Yan M, Song X. A visible light photoelectrochemical sensor for tumor marker detection using tin dioxide quantum dot–graphene as labels. Analyst 2013;138:7112. [DOI: 10.1039/c3an01410j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
38 Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta. 2013;758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Cited by in Crossref: 295] [Cited by in F6Publishing: 297] [Article Influence: 29.5] [Reference Citation Analysis]
39 Zhang H, Liu R, Zheng J. Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode. Analyst 2012;137:5363. [DOI: 10.1039/c2an36075f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]