BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Progress in Polymer Science 2019;90:1-34. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Cited by in Crossref: 332] [Cited by in F6Publishing: 217] [Article Influence: 83.0] [Reference Citation Analysis]
Number Citing Articles
1 Long T, Tan W, Tian X, Tang Z, Hu K, Ge L, Mu C, Li X, Xu Y, Zhao L, Li D. Gelatin/alginate-based microspheres with sphere-in-capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. Int J Biol Macromol 2023;226:485-95. [PMID: 36521695 DOI: 10.1016/j.ijbiomac.2022.12.040] [Reference Citation Analysis]
2 Durairaj K, Balasubramanian B, Arumugam VA, Easwaran M, Park S, Issara U, Pushparaj K, Al-Dhabi NA, Arasu MV, Liu WC, Mousavi Khaneghah A. Biocompatibility of Veratric Acid-Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Appl Biochem Biotechnol 2023. [PMID: 36701091 DOI: 10.1007/s12010-023-04311-5] [Reference Citation Analysis]
3 Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, Shao D, Tao Y, Li M. Microneedle system for tissue engineering and regenerative medicine. Exploration 2023. [DOI: 10.1002/exp.20210170] [Reference Citation Analysis]
4 Han X, Wang L, Shang Y, Liu X, Kang IK, Shen J, Yuan J. Bilayer dressing based on aerogel/electrospun mats with self-catalytic hydrogen sulfide generation and enhanced antioxidant ability. J Mater Chem B 2023. [PMID: 36647587 DOI: 10.1039/d2tb02090d] [Reference Citation Analysis]
5 Mirbagheri MS, Akhavan-mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydrate Polymers 2023. [DOI: 10.1016/j.carbpol.2022.120512] [Reference Citation Analysis]
6 Caldara M, Kulpa J, Lowdon JW, Cleij TJ, Diliën H, Eersels K, Grinsven BV. Recent Advances in Molecularly Imprinted Polymers for Glucose Monitoring: From Fundamental Research to Commercial Application. Chemosensors 2023;11:32. [DOI: 10.3390/chemosensors11010032] [Reference Citation Analysis]
7 Mai Z, Liu Q, Bian Y, Wang P, Fu X, Lin D, Kong N, Huang Y, Zeng Z, Li D, Zheng W, Xia Y, Zhou W. PCL/Collagen/UA Composite Biomedical Dressing with Ordered Microfiberous Structure Fabricated by a 3D Near-Field Electrospinning Process. Polymers (Basel) 2022;15. [PMID: 36616572 DOI: 10.3390/polym15010223] [Reference Citation Analysis]
8 Lv Y, Fang X, Zhao B, Liu Y, Pan K. Tri-Level Wrinkle-Vein-Sheet Structured Reduced Graphene Oxide/Nanofiber Films for Flexible Piezoresistive Sensors. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04844] [Reference Citation Analysis]
9 Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2023;18:100524. [PMID: 36619202 DOI: 10.1016/j.mtbio.2022.100524] [Reference Citation Analysis]
10 Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. Adv Fiber Mater 2022. [DOI: 10.1007/s42765-022-00237-5] [Reference Citation Analysis]
11 Li Y, Xiao S, Luo Y, Tian S, Tang J, Zhang X, Xiong J. Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy 2022;104:107884. [DOI: 10.1016/j.nanoen.2022.107884] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Xu C, Guan S, Hou W, Dong X, Qi M. Magnesium-organic framework modified biodegradable electrospun scaffolds for promoting osteogenic differentiation and bone regeneration. European Polymer Journal 2022;181:111692. [DOI: 10.1016/j.eurpolymj.2022.111692] [Reference Citation Analysis]
13 Han L, Wang W, Chen Z, Cai Y, Chen C, Chen G, Wang F. Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair. Colloids Surf B Biointerfaces 2022;222:113061. [PMID: 36508890 DOI: 10.1016/j.colsurfb.2022.113061] [Reference Citation Analysis]
14 Bakhtiary N, Pezeshki-modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chemical Engineering Science 2022;264:118144. [DOI: 10.1016/j.ces.2022.118144] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Zeng Z, Zhu M, Chen L, Zhang Y, Lu T, Deng Y, Ma W, Xu J, Huang C, Xiong R. Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies. Composites Part B: Engineering 2022;247:110313. [DOI: 10.1016/j.compositesb.2022.110313] [Reference Citation Analysis]
16 Wang Z, Li J, Qiao Y, Liu X, Zheng Y, Li Z, Shen J, Zhang Y, Zhu S, Jiang H, Liang Y, Cui Z, Chu PK, Wu S. Rapid Ferroelectric-Photoexcited Bacteria-Killing of Bi4Ti3O12/Ti3C2Tx Nanofiber Membranes. Adv Fiber Mater 2022. [DOI: 10.1007/s42765-022-00234-8] [Reference Citation Analysis]
17 Zhang C, Lu L, Ouyang R, Zhou C. Polyurethane/Liquid Crystal Microfibers with pDNA Polyplex Loadings for the Optimal Release and Promotion of HUVEC Proliferation. Pharmaceutics 2022;14. [PMID: 36432685 DOI: 10.3390/pharmaceutics14112489] [Reference Citation Analysis]
18 Alexeeva O, Siracusa V, L. Konstantinova M, A. Olkhov A, L. Iordanskii A, A. Berlin A. Ozonation of Non-Woven Ultrathin Fibrous Biomaterials for Medical and Packaging Implementations. Ozone Research - Recent Advances [Working Title] 2022. [DOI: 10.5772/intechopen.107508] [Reference Citation Analysis]
19 Zhang H, Zhao T, Xu Y, Ding Y, Chuan X, Liang J. Enhancement of biocompatibility and patency for small-diameter vascular graft derived from polyurethane composite fibers with added tourmaline nanoparticles by electrospinning technology. J Mater Sci 2022. [DOI: 10.1007/s10853-022-07882-6] [Reference Citation Analysis]
20 Baptista RMF, Silva B, Oliveira J, Isfahani VB, Almeida B, Pereira MR, Cerca N, Castro C, Rodrigues PV, Machado A, Belsley M, Gomes EM. High Piezoelectric Output Voltage from Blue Fluorescent N,N-Dimethyl-4-nitroaniline Nano Crystals in Poly-L-Lactic Acid Electrospun Fibers. Materials (Basel) 2022;15. [PMID: 36431444 DOI: 10.3390/ma15227958] [Reference Citation Analysis]
21 Huang J, Wu J, Wang J, Xu M, Jiao J, Qiang Y, Zhang F, Li Z. Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing. Adv Fiber Mater 2022. [DOI: 10.1007/s42765-022-00224-w] [Reference Citation Analysis]
22 Zhao Y, Guo G, Xu B, Liu H, Tian H, Li J, Ouyang Y, Xiang A, Kumar R. Electrospun natural polypeptides based nanofabrics enriched with antioxidant polyphenols for active food preservation. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134991] [Reference Citation Analysis]
23 Kaniuk Ł, Berniak K, Lichawska-cieślar A, Jura J, Karbowniczek JE, Stachewicz U. Accelerated wound closure rate by hyaluronic acid release from coated PHBV electrospun fiber scaffolds. Journal of Drug Delivery Science and Technology 2022;77:103855. [DOI: 10.1016/j.jddst.2022.103855] [Reference Citation Analysis]
24 Sokoot EA, Arkan E, Khazaei M, Moradipour P. A novel 3D-electrospun nanofibers-scaffold grafted with Royal Jelly: improve hydrophilicity of the nanofibers-scaffold and proliferation of HUVEC cell line. Cell Tissue Bank 2022. [DOI: 10.1007/s10561-022-10035-3] [Reference Citation Analysis]
25 Lin J, Shiu B, Hsu P, Lou C, Lin J. PVP/CS/Phyllanthus emblica Nanofiber Membranes for Dry Facial Masks: Manufacturing Process and Evaluations. Polymers 2022;14:4470. [DOI: 10.3390/polym14214470] [Reference Citation Analysis]
26 Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023;22:343-64. [PMID: 36311045 DOI: 10.1016/j.bioactmat.2022.10.014] [Reference Citation Analysis]
27 Uddin MN, Mohebbullah M, Islam SM, Uddin MA, Jobaer M. Nigella/honey/garlic/olive oil co-loaded PVA electrospun nanofibers for potential biomedical applications. Prog Biomater 2022. [PMID: 36264478 DOI: 10.1007/s40204-022-00207-5] [Reference Citation Analysis]
28 Thum MD, Weise NK, Casalini R, Fulton AC, Purdy AP, Lundin JG. Incorporation of N , N ,‐diethyl‐meta‐toluamide within electrospun nylon‐6/6 nanofibers. J of Applied Polymer Sci. [DOI: 10.1002/app.53237] [Reference Citation Analysis]
29 Tang X. Recent advances on nanofibrous acoustic materials for noise reduction applications. The Journal of The Textile Institute 2022. [DOI: 10.1080/00405000.2022.2131339] [Reference Citation Analysis]
30 Yang B, Chang X, Ding X, Ma X, Zhang M. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. Journal of Colloid and Interface Science 2022;623:196-204. [DOI: 10.1016/j.jcis.2022.05.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Palanisamy CP, Cui B, Zhang H, Gunasekaran VP, Ariyo AL, Jayaraman S, Rajagopal P, Long Q. A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application. Int J Biol Macromol 2022:S0141-8130(22)02214-0. [PMID: 36195229 DOI: 10.1016/j.ijbiomac.2022.09.274] [Reference Citation Analysis]
32 Lv Q, Ma C. A novel protocol for injectable artificial cartilage constructs based on programmed shape-morphing hydrogels for cartilage regeneration. Chemical Engineering Journal 2022;446:137109. [DOI: 10.1016/j.cej.2022.137109] [Reference Citation Analysis]
33 Kargozar S, Nazarnezhad S, Kermani F, Baino F. Nanomaterials and Scaffolds for Tissue Engineering and Regenerative Medicine. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch11] [Reference Citation Analysis]
34 Hu M, Peng X, Shi S, Wan C, Cheng C, Lei N, Yu X. Sulfonated, oxidized pectin-based double crosslinked bioprosthetic valve leaflets for synergistically enhancing hemocompatibility and cytocompatibility and reducing calcification. J Mater Chem B 2022. [PMID: 36173240 DOI: 10.1039/d2tb01704k] [Reference Citation Analysis]
35 Alzahrani F. Novel Platform Assays for the Diagnosis of Hemostatic Disorders: A Systematic Review.. [DOI: 10.21203/rs.3.rs-2086072/v1] [Reference Citation Analysis]
36 Caprio ND, Burdick JA. Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomater 2022:S1742-7061(22)00620-1. [PMID: 36167240 DOI: 10.1016/j.actbio.2022.09.052] [Reference Citation Analysis]
37 Cao X, Chen W, Zhao P, Yang Y, Yu D. Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers 2022;14:3990. [DOI: 10.3390/polym14193990] [Reference Citation Analysis]
38 Liang S, Huang Y, Xia Y, Liang S, Wu Q, Zhi Z. Animal models in intrauterine adhesion research. J Obstet Gynaecol 2022;:1-7. [PMID: 36129458 DOI: 10.1080/01443615.2022.2124854] [Reference Citation Analysis]
39 Wang Y, Lu S, Zheng J, Liang L, Stylianou A. Advances in Latest Application Status, Challenges, and Future Development Direction of Electrospinning Technology in the Biomedical. Journal of Nanomaterials 2022;2022:1-18. [DOI: 10.1155/2022/3791908] [Reference Citation Analysis]
40 Li L, Hao R, Qin J, Song J, Chen X, Rao F, Zhai J, Zhao Y, Zhang L, Xue J. Electrospun Fibers Control Drug Delivery for Tissue Regeneration and Cancer Therapy. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00198-9] [Reference Citation Analysis]
41 Kumar J, Verma R, Singh NK, Singh NK, Nirala NS, Rai SK. Mechanical Property Analysis of Triply Periodic Minimal Surface Inspired Porous Scaffold for Bone Applications: A Compromise between Desired Mechanical Strength and Additive Manufacturability. J of Materi Eng and Perform. [DOI: 10.1007/s11665-022-07322-1] [Reference Citation Analysis]
42 Zhong H, Huang J, Luo M, Fang Y, Zeng X, Wu J, Du J. Near-field electrospun PCL fibers/GelMA hydrogel composite dressing with controlled deferoxamine-release ability and retiform surface for diabetic wound healing. Nano Res . [DOI: 10.1007/s12274-022-4813-5] [Reference Citation Analysis]
43 Liu C, Xiang J, Li J, Xiang C, Li H, Wei F, Zhao Z, Li R, Wong KM, Gong P. Rational design and synthesis of novel NIR photosensitizers and application in antimicrobial photodynamic inactivation. Journal of Molecular Structure 2022;1263:133138. [DOI: 10.1016/j.molstruc.2022.133138] [Reference Citation Analysis]
44 Xu C, Kang Y, Guan S, Dong X, Jiang D, Qi M. Iron-based metal–organic framework as a dual cooperative release system for enhanced vascularization and bone regeneration. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107825] [Reference Citation Analysis]
45 Xia Y, Yang R, Wang H, Li Y, Fu C. Application of chitosan-based materials in surgical or postoperative hemostasis. Front Mater 2022;9:994265. [DOI: 10.3389/fmats.2022.994265] [Reference Citation Analysis]
46 Khramtsova E, Morokov E, Antipova C, Krasheninnikov S, Lukanina K, Grigoriev T. How the Nonwoven Polymer Volume Microstructure Is Transformed under Tension in an Aqueous Environment. Polymers 2022;14:3526. [DOI: 10.3390/polym14173526] [Reference Citation Analysis]
47 Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. Chemosphere 2022;:135810. [PMID: 35932921 DOI: 10.1016/j.chemosphere.2022.135810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Banasiak AI, Racki A, Małek M, Chlanda A. Flake Graphene as an Efficient Agent Governing Cellular Fate and Antimicrobial Properties of Fibrous Tissue Engineering Scaffolds—A Review. Materials 2022;15:5306. [DOI: 10.3390/ma15155306] [Reference Citation Analysis]
49 Yang C, Li D, Zang S, Zhou Y, Zhang L, Zhong Z. Nanocoating of CsgA protein for enhanced cell adhesion and proliferation. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.08.013] [Reference Citation Analysis]
50 Feng P, Wang K, Shuai Y, Peng S, Hu Y, Shuai C. Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Materials Today Advances 2022;15:100272. [DOI: 10.1016/j.mtadv.2022.100272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
51 Abdul Khalil H, Bashir Yahya E, Jummaat F, Adnan A, Olaiya N, Rizal S, Abdullah C, Pasquini D, Thomas S. Biopolymers based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101014] [Reference Citation Analysis]
52 Gong X, Li Y, Wang D, Cao H, Yang Z, Wang H, Wang L. Process-Biomimetic Macromolecular Materials for In Vivo Applications. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101015] [Reference Citation Analysis]
53 Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022:S0141-8130(22)01572-0. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
54 Yang Y, Du Y, Zhang J, Zhang H, Guo B. Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00178-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers 2022;14:2647. [DOI: 10.3390/polym14132647] [Reference Citation Analysis]
56 Goudarzi ZM, Soleimani M, Ghasemi-Mobarakeh L, Sajkiewicz P, Sharifianjazi F, Esmaeilkhanian A, Khaksar S. Control of drug release from cotton fabric by nanofibrous mat. Int J Biol Macromol 2022:S0141-8130(22)01352-6. [PMID: 35760164 DOI: 10.1016/j.ijbiomac.2022.06.138] [Reference Citation Analysis]
57 Xu H, Wu Z, Zhao D, Liang H, Yuan H, Wang C. Preparation and characterization of electrospun nanofibers-based facial mask containing hyaluronic acid as a moisturizing component and huangshui polysaccharide as an antioxidant component. Int J Biol Macromol 2022;214:212-9. [PMID: 35709871 DOI: 10.1016/j.ijbiomac.2022.06.047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022;8:2196-219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
59 Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022;15:100318. [PMID: 35734197 DOI: 10.1016/j.mtbio.2022.100318] [Reference Citation Analysis]
60 Wang Z, Zhang B, Weng X, Yu X, Liu X, He T. Application of electrospun polyimide-based porous nano-fibers separators in ionic liquid electrolyte for electrical double-layer capacitors. Polymer 2022;253:124945. [DOI: 10.1016/j.polymer.2022.124945] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Svyntkivska M, Makowski T, de Boer EL, Piorkowska E. Solution electrospinning and properties of poly(ethylene 2,5-furandicarboxylate) fibers. Polymer Testing 2022. [DOI: 10.1016/j.polymertesting.2022.107677] [Reference Citation Analysis]
62 Kong Y, Xu J, Han Q, Zheng T, Wu L, Li G, Yang Y. Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol 2022;209:1867-81. [PMID: 35489621 DOI: 10.1016/j.ijbiomac.2022.04.161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Dos Santos Gomes D, de Sousa Victor R, de Sousa BV, de Araújo Neves G, de Lima Santana LN, Menezes RR. Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. Materials (Basel) 2022;15:3909. [PMID: 35683207 DOI: 10.3390/ma15113909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Cheng L, Xu Z, Liu Y, Zhou D, Sun M, Xu Y, Chen L, Sun J. 3D-Printed Drug-Loaded Composite Scaffolds to Promote Osteogenesis and Antibacterial Activity. ACS Appl Polym Mater 2022;4:4476-85. [DOI: 10.1021/acsapm.2c00432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Gao R, Kong P, Yang C, Liu X, Wang J, Ouyang W, Huang P, Zhang C, Feng Z, Wang W. Gelatinized PLCL Electrospun Membrane for the Prevention of Postoperative Abdominal Adhesion Through Fibrinolysis Activation. Adv Materials Inter. [DOI: 10.1002/admi.202200063] [Reference Citation Analysis]
66 Zhao C, Lv Q, Wu W. Application and Prospects of Hydrogel Additive Manufacturing. Gels 2022;8:297. [DOI: 10.3390/gels8050297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Madani SM, Sangpour P, Vaezi MR, Amani-tehran M, Ramezanzadeh B. Studying of Nanoribbon and Circular Poly (Vinyl Alcohol) Nanofibers Deposited by Electrospinning: Film Synthesis, Characterization Structure, and Resistance Corrosion. J Fail Anal and Preven . [DOI: 10.1007/s11668-022-01408-7] [Reference Citation Analysis]
68 Berri N, Elzein T, Dragoe D, Houel Renault L, Barroca-aubry N, Mouhamad AW, Roger P. Surface Grafting of Electrospun Fibers: Multiscale Characterization and Perspective for Potential Applications. ACS Appl Polym Mater 2022;4:3743-51. [DOI: 10.1021/acsapm.2c00229] [Reference Citation Analysis]
69 Su Y, Fan T, Cui W, Li Y, Ramakrishna S, Long Y. Advanced Electrospun Nanofibrous Materials for Efficient Oil/Water Separation. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00158-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
70 Li M, Qiu W, Wang Q, Li N, Liu L, Wang X, Yu J, Li X, Li F, Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS Appl Mater Interfaces 2022;14:15911-26. [PMID: 35373564 DOI: 10.1021/acsami.1c24131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ewaldz E, Randrup J, Brettmann B. Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS Polym Au 2022;2:108-17. [DOI: 10.1021/acspolymersau.1c00041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Kheilnezhad B, Hadjizadeh A. Ibuprofen-Loaded Electrospun PCL/PEG Nanofibrous Membranes for Preventing Postoperative Abdominal Adhesion. ACS Appl Bio Mater 2022. [PMID: 35389215 DOI: 10.1021/acsabm.2c00126] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
73 Parham S, Kharazi AZ, Bakhsheshi-rad HR, Kharaziha M, Ismail AF, Sharif S, Razzaghi M, Ramakrishna S, Berto F. Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Adv Eng Mater. [DOI: 10.1002/adem.202101460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Huang K, Huang J, Zhao J, Gu Z, Wu J. Natural lotus root-based scaffolds for bone regeneration. Chinese Chemical Letters 2022;33:1941-5. [DOI: 10.1016/j.cclet.2021.10.073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
75 Xue F, Liu T, Liu X, Chen K, Duan L, Gao G. Electroconductive and porous graphene-xanthan gum gel scaffold for spinal cord regeneration. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111225] [Reference Citation Analysis]
76 Kong W, Li R, Xia P, Pan S, Qi Z, Zhao C, Fu C, Yang X. AuNPs@PDA-PLGA nanomembrane combined with electrical stimulation promotes spinal cord injury recovery. Materials & Design 2022;216:110585. [DOI: 10.1016/j.matdes.2022.110585] [Reference Citation Analysis]
77 Bee SL, Hamid ZAA. Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35322931 DOI: 10.1002/jbm.b.35060] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. Adv Sci (Weinh) 2022;9:e2105084. [PMID: 35038244 DOI: 10.1002/advs.202105084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
79 Chen C, Zhu J, Chen J, Yu F, Huang K, Jiang J, Zhu T, Mo X, Zhao J. A reinforced nanofibrous patch with biomimetic mechanical properties and chondroinductive effect for rotator cuff tissue engineering. Materials Today Chemistry 2022;23:100655. [DOI: 10.1016/j.mtchem.2021.100655] [Reference Citation Analysis]
80 King WE, Bowlin GL. Near-field electrospinning of polydioxanone small diameter vascular graft scaffolds. Journal of the Mechanical Behavior of Biomedical Materials 2022. [DOI: 10.1016/j.jmbbm.2022.105207] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Cordoba A, Saldias C, Urzúa M, Montalti M, Guernelli M, Focarete ML, Leiva A. On the Versatile Role of Electrospun Polymer Nanofibers as Photocatalytic Hybrid Materials Applied to Contaminated Water Remediation: A Brief Review. Nanomaterials 2022;12:756. [DOI: 10.3390/nano12050756] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
82 Cui C, Sun S, Li X, Chen S, Wu S, Zhou F, Ma J. Optimizing the chitosan-PCL based membranes with random/aligned fiber structure for controlled ciprofloxacin delivery and wound healing. Int J Biol Macromol 2022:S0141-8130(22)00364-6. [PMID: 35218801 DOI: 10.1016/j.ijbiomac.2022.02.118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
83 Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. Aggregate. [DOI: 10.1002/agt2.176] [Reference Citation Analysis]
84 Wang L, Cao Y, Shen Z, Li M, Zhang W, Liu Y, Zhang Y, Duan J, Ma Z, Sang S. 3D printed GelMA/carboxymethyl chitosan composite scaffolds for vasculogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2032702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. Tissue Eng Part B Rev 2022;28:141-59. [PMID: 33375900 DOI: 10.1089/ten.TEB.2020.0252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
86 Sancho A, Taskin MB, Wistlich L, Stahlhut P, Wittmann K, Rossi A, Groll J. Cell Adhesion Assessment Reveals a Higher Force per Contact Area on Fibrous Structures Compared to Flat Substrates. ACS Biomater Sci Eng . [DOI: 10.1021/acsbiomaterials.1c01290] [Reference Citation Analysis]
87 Liu Y, Zhu T, Li J, Bao Y, Cheng B, Chen S, Du J, Hu S. Magnolol Hybrid Nanofibrous Mat with Antibacterial, Anti-Inflammatory, and Microvascularized Properties for Wound Treatment. Biomacromolecules. [DOI: 10.1021/acs.biomac.1c01430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Barbalho GN, Matos BN, da Silva Brito GF, da Cunha Miranda T, Alencar-silva T, Sodré FF, Gelfuso GM, Cunha-filho M, Carvalho JL, da Silva JKDR, Gratieri T. Skin Regenerative Potential of Cupuaçu Seed Extract (Theobroma grandiflorum), a Native Fruit from the Amazon: Development of a Topical Formulation Based on Chitosan-Coated Nanocapsules. Pharmaceutics 2022;14:207. [DOI: 10.3390/pharmaceutics14010207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Rashia Begum S, Saravana Kumar M, Vasumathi M, Umar Farooq M, Pruncu CI. Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique. Proc Inst Mech Eng H 2022;:9544119211070412. [PMID: 35014560 DOI: 10.1177/09544119211070412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
90 Uribe-Gomez J, Schönfeld D, Posada-Murcia A, Roland MM, Caspari A, Synytska A, Salehi S, Pretsch T, Ionov L. Fibrous Scaffolds for Muscle Tissue Engineering Based on Touch-Spun Poly(Ester-Urethane) Elastomer. Macromol Biosci 2022;:e2100427. [PMID: 35007398 DOI: 10.1002/mabi.202100427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022;:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
92 Zhao B, Li Y, Wang Q, Ren Y, Zheng Z, Bai M, Lv J, Li K, Xu J, Li Z, Song X. Ultra-slippery, nonirritating, and anti-inflammatory hyaluronic acid-based coating to mitigate intubation injury. Chemical Engineering Journal 2022;427:130911. [DOI: 10.1016/j.cej.2021.130911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
93 Ashammakhi N, Tavafoghi M, Jafari A, Kalva SN, Augustine R, Hasan A, Savoji H, Ertas YN, Li S. Electrospinning and Three-Dimensional (3D) Printing for Biofabrication. Electrospun Nanofibers 2022. [DOI: 10.1007/978-3-030-99958-2_20] [Reference Citation Analysis]
94 Li W, Wang J, Cheng Z, Yang G, Zhao C, Gao F, Zhang Z, Qian Y. Sandwich structure Aloin-PVP/Aloin-PVP-PLA/PLA as a wound dressing to accelerate wound healing. RSC Adv 2022;12:27300-8. [DOI: 10.1039/d2ra02320b] [Reference Citation Analysis]
95 Fang J, Li S. End-Point Immobilization of Heparin on Electrospun Polycarbonate-Urethane Vascular Graft. Methods Mol Biol 2022;2375:47-59. [PMID: 34591298 DOI: 10.1007/978-1-0716-1708-3_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Collins MN, Zamboni F, Serafin A, Ren G, Thanusha AV, Culebras M. The Role of Hyaluronic Acid in Tissue Engineering. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_56] [Reference Citation Analysis]
97 Song X, Melro L, Padrão J, Ribeiro AI, Yu L, Zille A. Nonwoven materials and technologies for medical applications. Medical Textiles from Natural Resources 2022. [DOI: 10.1016/b978-0-323-90479-7.00008-7] [Reference Citation Analysis]
98 Vijayan VM, Hernandez-moreno G, Thomas V. Future of nanotechnology in tissue engineering. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00003-4] [Reference Citation Analysis]
99 Mansour AM, El-sherbiny IM. Nanofibrous Scaffolds for the Management of Periodontal Diseases. Advances in Polymer Science 2022. [DOI: 10.1007/12_2022_126] [Reference Citation Analysis]
100 Kaniuk Ł, Podborska A, Stachewicz U. Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. J Mater Chem B. [DOI: 10.1039/d1tb02805g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
101 Hermenegildo B, Ribeiro C, Peřinka N, Martins P, Trchová M, Hajná M, Stejskal J, Lanceros-méndez S. Electroactive poly(vinylidene fluoride) electrospun fiber mats coated with polyaniline and polypyrrole for tissue regeneration applications. Reactive and Functional Polymers 2022;170:105118. [DOI: 10.1016/j.reactfunctpolym.2021.105118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
102 Chen L, Yu Q, Cheng K, Topham PD, Xu M, Sun X, Pan Y, Jia Y, Wang S, Wang L. Can Photothermal Post-Operative Cancer Treatment Be Induced by a Thermal Trigger? ACS Appl Mater Interfaces 2021;13:60837-51. [PMID: 34915699 DOI: 10.1021/acsami.1c16283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
103 Carlos ALM, Mancipe JM, Dias M, Thiré R. Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) core‐shell spun fibers produced by solution blow spinning for bioactive agent's encapsulation. J of Applied Polymer Sci. [DOI: 10.1002/app.52081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
104 Zhang Y, Wu L, Babar AA, Zhao X, Wang X, Yu J, Ding B. Honeycomb-Inspired Robust Hygroscopic Nanofibrous Cellular Networks. Small Methods 2021;5:e2101011. [PMID: 34927957 DOI: 10.1002/smtd.202101011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Huang A, Ma Y, Peng J, Li L, Chou S, Ramakrishna S, Peng S. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021;1:141-62. [DOI: 10.1016/j.esci.2021.11.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 37] [Article Influence: 14.5] [Reference Citation Analysis]
106 Zhao Q, Wang M. Electrospinning and Electrospraying with Cells for Applications in Biomanufacturing. Nano LIFE 2021;11. [DOI: 10.1142/s1793984421410038] [Reference Citation Analysis]
107 Wang Y, Qu Q, Cui J, Lu T, Li F, Zhang M, Liu K, Zhang Q, He S, Huang C. Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydrate Polymer Technologies and Applications 2021;2:100117. [DOI: 10.1016/j.carpta.2021.100117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
108 Sun H, Zhao Q, Zheng L, Lu WW, Wang M. Cell-Incorporated Bioactive Tissue Engineering Scaffolds made by Concurrent Cell Electrospinning and Emulsion Electrospinning. Nano LIFE 2021;11. [DOI: 10.1142/s1793984421410051] [Reference Citation Analysis]
109 Tamayo L, Santana P, Forero JC, Leal M, González N, Díaz M, Guiliani N, Hamm E, Urzúa M. Coaxial fibers of poly(styrene-co-maleic anhydride)@poly(vinyl alcohol) for wound dressing applications: Dual and sustained delivery of bioactive agents promoting fibroblast proliferation with reduced cell adherence. Int J Pharm 2021;:121292. [PMID: 34780927 DOI: 10.1016/j.ijpharm.2021.121292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
110 Hu M, Peng X, Zhao Y, Yu X, Cheng C, Yu X. Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomater Sci 2021;9:7617-35. [PMID: 34671797 DOI: 10.1039/d1bm01297e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
111 Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. Adv Mater 2021;:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
112 Truszkowska A, Porfiri M. Molecular dynamics of ionic polymer-metal composites. Philos Trans A Math Phys Eng Sci 2021;379:20200408. [PMID: 34455834 DOI: 10.1098/rsta.2020.0408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
113 Kaniuk Ł, Stachewicz U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater Sci Eng 2021. [PMID: 34649426 DOI: 10.1021/acsbiomaterials.1c00757] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
114 Saadaldin S, Aldegheishem A, Eldwakhly E, Mostafa MS, Soliman M. Riboflavin mediated photo-illumination for bonding zirconia to tooth structure. Materials Technology. [DOI: 10.1080/10667857.2021.1982472] [Reference Citation Analysis]
115 Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;128:112287. [PMID: 34474838 DOI: 10.1016/j.msec.2021.112287] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
116 Trofimchuk ES, Potseleev VV, Khavpachev MA, Moskvina MA, Nikonorova NI. Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. Polym Sci Ser C 2021;63:199-218. [DOI: 10.1134/s1811238221020107] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
117 Zhang X, Wang L. Research progress of carbon nanofiber-based precious-metal-free oxygen reaction catalysts synthesized by electrospinning for Zn-Air batteries. Journal of Power Sources 2021;507:230280. [DOI: 10.1016/j.jpowsour.2021.230280] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
118 Rezaei V, Mirzaei E, Taghizadeh S, Berenjian A, Ebrahiminezhad A. Nano Iron Oxide-PCL Composite as an Improved Soft Tissue Scaffold. Processes 2021;9:1559. [DOI: 10.3390/pr9091559] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
119 Montagna LS, Silva AP, Martinez de Freitas A, Lemes AP. Magnetic Nanoparticles in the Development of Polymer Scaffolds for Medical Applications. Magnetic Nanoparticles in Human Health and Medicine 2021. [DOI: 10.1002/9781119754725.ch5] [Reference Citation Analysis]
120 Xu H, Shen M, Shang H, Xu W, Zhang S, Yang H, Zhou D, Hakkarainen M. Osteoconductive and Antibacterial Poly(lactic acid) Fibrous Membranes Impregnated with Biobased Nanocarbons for Biodegradable Bone Regenerative Scaffolds. Ind Eng Chem Res 2021;60:12021-31. [DOI: 10.1021/acs.iecr.1c02165] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
121 Zhong H, Huang J, Wu J, Du J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res 2022;15:787-804. [DOI: 10.1007/s12274-021-3593-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
122 Moradi M, Guimarães JT, Sahin S. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science 2021;40:33-9. [DOI: 10.1016/j.cofs.2020.06.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
123 Mao N, Qin X, Wang L, Yu J. The migration behavior of electrospun nanofibers within cotton slivers in roller drafting and their effects on composite yarn quality. Textile Research Journal 2021;91:1555-1564. [DOI: 10.1177/0040517520986519] [Reference Citation Analysis]
124 Bonartsev AP, Ol’khov AA, Khan OI, Kucherenko EL, Filatova AG, Zernova YN, Iordanskii AL. Matrices for Tissue Engineering Based on Ultrafine Fibers and Microparticles of Poly(hydroxybutyrate). Inorg Mater Appl Res 2021;12:974-979. [DOI: 10.1134/s2075113321040080] [Reference Citation Analysis]
125 Li R, Sun Y, Cai Z, Li Y, Sun J, Bi W, Yang F, Zhou Q, Ye T, Yu Y. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chemical Engineering Journal 2021;415:129015. [DOI: 10.1016/j.cej.2021.129015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
126 Asgari S, Pourjavadi A, Setayeshmehr M, Boisen A, Ajalloueian F. Encapsulation of Drug‐Loaded Graphene Oxide‐Based Nanocarrier into Electrospun Pullulan Nanofibers for Potential Local Chemotherapy of Breast Cancer. Macromol Chem Phys 2021;222:2100096. [DOI: 10.1002/macp.202100096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
127 Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Zhang Y, Sang S, Han Y. Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1915783] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
128 Jo B, Nie M, Takeuchi S. Manufacturing of animal products by the assembly of microfabricated tissues. Essays Biochem 2021:EBC20200092. [PMID: 34156065 DOI: 10.1042/EBC20200092] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
129 Gu X, Xu Y, Li S, Wang Z, Meng Q, Yu J. Preparation of a Photocured Biocompatible Hydrogel for Urethral Tissue Engineering. ACS Appl Polym Mater 2021;3:3519-27. [DOI: 10.1021/acsapm.1c00427] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
130 Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021;:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
131 Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release 2021;334:463-84. [PMID: 33781809 DOI: 10.1016/j.jconrel.2021.03.033] [Cited by in Crossref: 116] [Cited by in F6Publishing: 81] [Article Influence: 58.0] [Reference Citation Analysis]
132 Ye L, Takagi T, Tu C, Hagiwara A, Geng X, Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A 2021. [PMID: 34096176 DOI: 10.1002/jbm.a.37243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
133 Nouri-Felekori M, Nezafati N, Moraveji M, Hesaraki S, Ramezani T. Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. Int J Biol Macromol 2021;183:2030-43. [PMID: 34097959 DOI: 10.1016/j.ijbiomac.2021.06.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
134 Haider MK, Sun L, Ullah A, Ullah S, Suzuki Y, Park S, Kato Y, Tamada Y, Kim IS. Polyacrylonitrile/Carbon Black nanoparticle/Nano-Hydroxyapatite (PAN/nCB/HA) composite nanofibrous matrix as a potential biomaterial scaffold for bone regenerative applications. Materials Today Communications 2021;27:102259. [DOI: 10.1016/j.mtcomm.2021.102259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
135 Li X, Li Q, Zhao C. Zero-Order Controlled Release of Water-Soluble Drugs Using a Marker Pen Platform. ACS Omega 2021;6:13774-8. [PMID: 34095669 DOI: 10.1021/acsomega.1c01141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
136 Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021;37:394-403. [DOI: 10.1007/s40242-021-1125-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
137 Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021;184:170-80. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
138 Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, Ma W, Huang C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl Mater Interfaces 2021;13:23293-313. [DOI: 10.1021/acsami.1c06520] [Cited by in Crossref: 76] [Cited by in F6Publishing: 87] [Article Influence: 38.0] [Reference Citation Analysis]
139 Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. Journal of Controlled Release 2021;333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
140 Poddar D, Jain P, Rawat S, Mohanty S. Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application. Carbohydrate Polymers 2021;259:117501. [DOI: 10.1016/j.carbpol.2020.117501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
141 Bouchet M, Ajji A, Lerouge S. Determination of the Adhesion Between Electrospun Mats through Peel tests. Fibers Polym 2021;22:1266-1273. [DOI: 10.1007/s12221-021-9195-x] [Reference Citation Analysis]
142 Shen Y, Xu Y, Yi B, Wang X, Tang H, Chen C, Zhang Y. Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix. Biomacromolecules 2021;22:2284-97. [PMID: 33913697 DOI: 10.1021/acs.biomac.1c00366] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
143 Chen F, Xu L, Tian Y, Caratenuto A, Liu X, Zheng Y. Electrospun Polycaprolactone Nanofiber Composites with Embedded Carbon Nanotubes/Nanoparticles for Photothermal Absorption. ACS Appl Nano Mater 2021;4:5230-9. [DOI: 10.1021/acsanm.1c00623] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
144 Zhang J, Xiao C, Zhang X, Lin Y, Yang H, Zhang YS, Ding J. An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. J Control Release 2021;335:359-68. [PMID: 33895199 DOI: 10.1016/j.jconrel.2021.04.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
145 Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021;264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
146 Qi X, Pan W, Tong X, Gao T, Xiang Y, You S, Mao R, Chi J, Hu R, Zhang W, Deng H, Shen J. ε‑Polylysine-stabilized agarose/polydopamine hydrogel dressings with robust photothermal property for wound healing. Carbohydr Polym 2021;264:118046. [PMID: 33910748 DOI: 10.1016/j.carbpol.2021.118046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
147 Xiao Y, Gu Y, Qin L, Chen L, Chen X, Cui W, Li F, Xiang N, He X. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids and Surfaces B: Biointerfaces 2021;200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
148 Morokov E, Zykova A, Tyubaeva P. The Influence of Microstructure in PHB Non‐Woven Materials on Mechanical Behavior Under Tension. Macromol Symp 2021;396:2000245. [DOI: 10.1002/masy.202000245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
149 Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021;333:448-86. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
150 Zebiri H, Van Den Berghe H, Sayegh S, Chammas PE, Pompée C, Chammas M, Garric X. Synthesis of PLA-poly(ether urethane)-PLA copolymers and design of biodegradable anti-adhesive membranes for orthopaedic applications. J Mater Chem B 2021;9:832-45. [PMID: 33347521 DOI: 10.1039/d0tb02545c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
151 Zhao Q, Zhou Y, Wang M. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomater 2021;123:312-24. [PMID: 33508508 DOI: 10.1016/j.actbio.2021.01.035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
152 Michalicha A, Pałka K, Roguska A, Pisarek M, Belcarz A. Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules. Carbohydr Polym 2021;256:117524. [PMID: 33483045 DOI: 10.1016/j.carbpol.2020.117524] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
153 Wang Y, Yokota T, Someya T. Electrospun nanofiber-based soft electronics. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-020-00267-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 26.0] [Reference Citation Analysis]
154 Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polym Adv Technol 2021;32:2267-89. [DOI: 10.1002/pat.5263] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
155 Xue C, Li M, Sutrisno L, Yan B, Zhao Y, Hu Y, Cai K, Zhao Y, Yu S, Luo Z. Bioresorbable Scaffolds with Biocatalytic Chemotherapy and In Situ Microenvironment Modulation for Postoperative Tissue Repair. Adv Funct Mater 2021;31:2008732. [DOI: 10.1002/adfm.202008732] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
156 Xiao Q, Mai B, Nie Y, Yuan C, Xiang M, Shi Z, Wu J, Leung W, Xu C, Yao SQ, Wang P, Gao L. In Vitro and In Vivo Demonstration of Ultraefficient and Broad-Spectrum Antibacterial Agents for Photodynamic Antibacterial Chemotherapy. ACS Appl Mater Interfaces 2021;13:11588-96. [PMID: 33656316 DOI: 10.1021/acsami.0c20837] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
157 Zhang Q, He S, Zhu X, Luo H, Gama M, Peng M, Deng X, Wan Y. Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. Mater Sci Eng C Mater Biol Appl 2021;122:111861. [PMID: 33641887 DOI: 10.1016/j.msec.2020.111861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
158 Amiryaghoubi N, Fathi M, Barzegari A, Barar J, Omidian H, Omidi Y. Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration. Materials Today Communications 2021;26:102097. [DOI: 10.1016/j.mtcomm.2021.102097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
159 Ji Y, Xia Q, Cui J, Zhu M, Ma Y, Wang Y, Gan L, Han S. High pressure laminates reinforced with electrospun cellulose acetate nanofibers. Carbohydr Polym 2021;254:117461. [PMID: 33357920 DOI: 10.1016/j.carbpol.2020.117461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Semitela Â, Girão AF, Fernandes C, Ramalho G, Pinto SC, Completo A, Marques PAAP. Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021;117:104373. [PMID: 33618241 DOI: 10.1016/j.jmbbm.2021.104373] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
161 Morokov E, Zykova A, Tyubaeva P. Nonwoven Scaffolds Under Tension: In Situ High‐Resolution Ultrasound Observation of Microstructure Evolution in the Volume. Adv Eng Mater 2021;23:2001373. [DOI: 10.1002/adem.202001373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
162 Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, Liu X, Li Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Appl Mater Interfaces 2021;13:7617-24. [DOI: 10.1021/acsami.0c22584] [Cited by in Crossref: 76] [Cited by in F6Publishing: 92] [Article Influence: 38.0] [Reference Citation Analysis]
163 Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021;175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
164 Akshay Kumar KP, Zare EN, Torres-Mendieta R, Wacławek S, Makvandi P, Černík M, Padil VVT, Varma RS. Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. Int J Biol Macromol 2021;171:130-49. [PMID: 33412195 DOI: 10.1016/j.ijbiomac.2020.12.205] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
165 Arenas JP, Li Z. Composites and biocomposites for noise and vibration control in automotive structures. Biocomposite and Synthetic Composites for Automotive Applications 2021. [DOI: 10.1016/b978-0-12-820559-4.00012-2] [Reference Citation Analysis]
166 Huang L, Zhang J, Liu X, Zhao T, Gu Z, Li Y. l-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. Chinese Chemical Letters 2021;32:234-8. [DOI: 10.1016/j.cclet.2020.11.046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
167 Mohammadzadehmoghadam S, Dong Y. Electrospinning of silk fibroin-based nanofibers and their applications in tissue engineering. Electrospun Polymers and Composites 2021. [DOI: 10.1016/b978-0-12-819611-3.00004-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
168 Yan X, Xiao X, Au C, Mathur S, Huang L, Wang Y, Zhang Z, Zhu Z, Kipper MJ, Tang J, Chen J. Electrospinning nanofibers and nanomembranes for oil/water separation. J Mater Chem A 2021;9:21659-84. [DOI: 10.1039/d1ta05873h] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
169 Maharjan B, Park J, Kaliannagounder VK, Awasthi GP, Joshi MK, Park CH, Kim CS. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydrate Polymers 2021;251:117023. [DOI: 10.1016/j.carbpol.2020.117023] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 34.0] [Reference Citation Analysis]
170 Eroglu E, Brown MM, Lou X. Application of electrospun composite materials for algal bioprocesses. Electrospun Polymers and Composites 2021. [DOI: 10.1016/b978-0-12-819611-3.00015-7] [Reference Citation Analysis]
171 Qian J, Lin Z, Liu Y, Wang Z, Lin Y, Gong C, Ruan R, Zhang J, Yang H. Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine 2021;2:260-79. [DOI: 10.1016/j.smaim.2021.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
172 Gao Q, Duan L, Feng X, Xu W. Superiority of poly(l-lactic acid) microspheres as dermal fillers. Chinese Chemical Letters 2021;32:577-82. [DOI: 10.1016/j.cclet.2020.03.071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
173 Bressa NR, Oviedo VR, Machado AMB, Almeida WLD, Volkmer TM, Santos LALD, Sagrillo MR, Rodrigues Junior LF. Incorporation of astrocaryum vulgare (tucuma) oil into PCL electrospun fibers. Polímeros 2021;31:e2021036. [DOI: 10.1590/0104-1428.20210056] [Reference Citation Analysis]
174 Razmshoar P, Shakoorjavan S, Akbari S. Surface-engineered dendrimers in targeting and delivery of drugs. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00015-9] [Reference Citation Analysis]
175 Mlynarczyk DT, Dlugaszewska J, Kaluzna-Mlynarczyk A, Goslinski T. Dendrimers against fungi - A state of the art review. J Control Release 2021;330:599-617. [PMID: 33347941 DOI: 10.1016/j.jconrel.2020.12.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
176 Shi S, Yin H, Zheng G, Su K, Gao S, Liao G, Liu W, Zheng Z, Xu J, Li X. Promoted Bone Regeneration by 3D-Printed Porous Scaffolds with the Synergy of a Nanotopological Morphology and Amino Modification. ACS Appl Bio Mater 2020;3:8627-8639. [DOI: 10.1021/acsabm.0c01024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
177 Yun H, Zhou X, Zhu H, Zhang M. One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance. J Colloid Interface Sci 2021;585:138-47. [PMID: 33279696 DOI: 10.1016/j.jcis.2020.11.060] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
178 Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J Biomater Sci Polym Ed 2021;32:536-61. [PMID: 33175667 DOI: 10.1080/09205063.2020.1849922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
179 Nejati K, Mehdi D, Ghareghomi S, Mostafavi E, Ebrahimi-kalan A, Biglari A, Alizadeh E, Mortazavi Y, Zarghami N. GDNF gene-engineered adipose-derived stem cells seeded Emu oil-loaded electrospun nanofibers for axonal regeneration following spinal cord injury. Journal of Drug Delivery Science and Technology 2020;60:102095. [DOI: 10.1016/j.jddst.2020.102095] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
180 Chandika P, Heo S, Kim T, Oh G, Kim G, Kim M, Jung W. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. International Journal of Biological Macromolecules 2020;164:2329-57. [DOI: 10.1016/j.ijbiomac.2020.08.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
181 Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. e-Polymers 2020;20:682-712. [DOI: 10.1515/epoly-2020-0068] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 17.7] [Reference Citation Analysis]
182 Martínez-pérez P, Ponce-alcántara S, Murillo N, Pérez-márquez A, Maudes J, Peraile I, González-lópez L, Gil-garcía M, Lorenzo-lozano P, García-rupérez J. Label-Free Optical Biosensing Using Low-Cost Electrospun Polymeric Nanofibers. Chemosensors 2020;8:119. [DOI: 10.3390/chemosensors8040119] [Reference Citation Analysis]
183 Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2021;167:934-46. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
184 Liu S, Sun L, Zhang H, Hu Q, Wang Y, Ramalingam M. High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering. Int J Biol Macromol 2021;166:1280-91. [PMID: 33159941 DOI: 10.1016/j.ijbiomac.2020.11.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
185 Notario-pérez F, Cazorla-luna R, Martín-illana A, Galante J, Ruiz-caro R, das Neves J, Veiga M. Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. Journal of Controlled Release 2020;327:477-99. [DOI: 10.1016/j.jconrel.2020.08.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
186 Ashwin B, Abinaya B, Prasith T, Chandran SV, Yadav LR, Vairamani M, Patil S, Selvamurugan N. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. International Journal of Biological Macromolecules 2020;162:523-32. [DOI: 10.1016/j.ijbiomac.2020.06.157] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
187 Dadgar N, Ghiaseddin A, Irani S, Rabbani S, Tafti SHA, Soufizomorrod M, Soleimani M. Cartilage tissue engineering using injectable functionalized Demineralized Bone Matrix scaffold with glucosamine in PVA carrier, cultured in microbioreactor prior to study in rabbit model. Mater Sci Eng C Mater Biol Appl 2021;120:111677. [PMID: 33545839 DOI: 10.1016/j.msec.2020.111677] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
188 Chavoshnejad P, Alsmairat O, Ke C, Razavi MJ. Effect of interfiber bonding on the rupture of electrospun fibrous mats. J Phys D: Appl Phys 2020;54:025302. [DOI: 10.1088/1361-6463/abba95] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
189 Huang C, Yang G, Zhou S, Luo E, Pan J, Bao C, Liu X. Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. ACS Biomater Sci Eng 2020;6:5758-70. [PMID: 33320572 DOI: 10.1021/acsbiomaterials.0c00837] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
190 Huang B. Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanuf Rev 2020;5. [DOI: 10.1007/s40898-020-00009-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
191 Kim S, Heath DE, Kentish SE. Composite Membranes with Nanofibrous Cross-Hatched Supports for Reverse Osmosis Desalination. ACS Appl Mater Interfaces 2020;12:44720-30. [PMID: 32941731 DOI: 10.1021/acsami.0c12588] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
192 Dong M, Shi B, Liu D, Liu JH, Zhao D, Yu ZH, Shen XQ, Gan JM, Shi BL, Qiu Y, Wang CC, Zhu ZZ, Shen QD. Conductive Hydrogel for a Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve. ACS Nano 2020. [PMID: 33025785 DOI: 10.1021/acsnano.0c05197] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
193 Tien ND, Maurya AK, Fortunato G, Rottmar M, Zboray R, Erni R, Dommann A, Rossi RM, Neels A, Sadeghpour A. Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. Langmuir 2020;36:11787-97. [PMID: 32936649 DOI: 10.1021/acs.langmuir.0c01487] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
194 Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing 2020;90:106647. [DOI: 10.1016/j.polymertesting.2020.106647] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 25.0] [Reference Citation Analysis]
195 Cui Y, Wu Q, He J, Li M, Zhang Z, Qiu Y. Porous nano-minerals substituted apatite/chitin/pectin nanocomposites scaffolds for bone tissue engineering. Arabian Journal of Chemistry 2020;13:7418-29. [DOI: 10.1016/j.arabjc.2020.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
196 Siva Prasad Y, Manikandan S, Lalitha K, Sandeep M, Vara Prasad R, Arun Kumar R, Srinandan C, Uma Maheswari C, Sridharan V, Nagarajan S. Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. Nano Select 2020;1:510-24. [DOI: 10.1002/nano.202000058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
197 Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater 2020;30:1910811. [PMID: 33708027 DOI: 10.1002/adfm.201910811] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
198 Havlíček K, Svobodová L, Bakalova T, Lederer T. Influence of electrospinning methods on characteristics of polyvinyl butyral and polyurethane nanofibres essential for biological applications. Materials & Design 2020;194:108898. [DOI: 10.1016/j.matdes.2020.108898] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
199 Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. Journal of Industrial and Engineering Chemistry 2020;89:58-82. [DOI: 10.1016/j.jiec.2020.06.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 8.7] [Reference Citation Analysis]
200 Maharjan B, Kaliannagounder VK, Jang SR, Awasthi GP, Bhattarai DP, Choukrani G, Park CH, Kim CS. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering: C 2020;114:111056. [DOI: 10.1016/j.msec.2020.111056] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 11.7] [Reference Citation Analysis]
201 Schoolaert E, Merckx R, Becelaere J, Everaerts M, Van Guyse JFR, Sedlacek O, De Geest BG, Van den Mooter G, D’hooge DR, De Clerck K, Hoogenboom R. Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- n -propyl-2-oxazoline). Macromolecules 2020;53:7590-600. [DOI: 10.1021/acs.macromol.0c00970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
202 Zong D, Cao L, Li Y, Yin X, Si Y, Yu J, Ding B. Interlocked Dual‐Network and Superelastic Electrospun Fibrous Sponges for Efficient Low‐Frequency Noise Absorption. Small Structures 2020;1:2000004. [DOI: 10.1002/sstr.202000004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
203 Ji X, Li R, Jia W, Liu G, Luo Y, Cheng Z. Co-Axial Fibers with Janus-Structured Sheaths by Electrospinning Release Corn Peptides for Wound Healing. ACS Appl Bio Mater 2020;3:6430-8. [DOI: 10.1021/acsabm.0c00860] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
204 Salih M, Omolo CA, Devnarain N, Elrashedy AA, Mocktar C, Soliman MES, Govender T. Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: in vitro, in silico and in vivo evaluations. Pharm Dev Technol 2020;25:1090-108. [PMID: 32684052 DOI: 10.1080/10837450.2020.1797786] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
205 Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D in vitro skeletal muscle models: A review. Materials & Design 2020;193:108794. [DOI: 10.1016/j.matdes.2020.108794] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
206 Kurakula M, Koteswara Rao G. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal 2020;136:109919. [DOI: 10.1016/j.eurpolymj.2020.109919] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
207 Cui T, Yu J, Li Q, Wang CF, Chen S, Li W, Wang G. Large-Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealant-Loaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blow-Spinning. Adv Mater 2020;32:e2000982. [PMID: 32627895 DOI: 10.1002/adma.202000982] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 16.7] [Reference Citation Analysis]
208 Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. Adv Therap 2021;4:2000096. [DOI: 10.1002/adtp.202000096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
209 Li Y, Sutrisno L, Hou Y, Fei Y, Xue C, Hu Y, Li M, Luo Z. A redox-activatable biopolymer-based micelle for sequentially enhanced mitochondria-targeted photodynamic therapy and hypoxia-dependent chemotherapy. Chem Commun (Camb) 2020;56:9978-81. [PMID: 32851998 DOI: 10.1039/d0cc03667f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
210 Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020;326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 14.3] [Reference Citation Analysis]
211 Harikrishnan P, Sivasamy A. Preparation, characterization of Electrospun Polycaprolactone-nano Zinc oxide composite scaffolds for Osteogenic applications. Nano-Structures & Nano-Objects 2020;23:100518. [DOI: 10.1016/j.nanoso.2020.100518] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
212 Wei L, Liu L, Gao C, Qian C, Xi K, Ruan H, Yu J, Luo ZP, Cui W. Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. Mater Sci Eng C Mater Biol Appl 2020;115:111048. [PMID: 32600683 DOI: 10.1016/j.msec.2020.111048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
213 Ji Y, Liang K, Guo Y. Fabricating polycitrate-based biodegradable elastomer nanofibrous mats via electrospinning. Journal of Elastomers & Plastics 2021;53:258-69. [DOI: 10.1177/0095244320933995] [Reference Citation Analysis]
214 Sharifi M, Bahrami SH, Nejad NH, Milan PB. Electrospun PCL and PLA hybrid nanofibrous scaffolds containing Nigella sativa herbal extract for effective wound healing. J Appl Polym Sci 2020;137:49528. [DOI: 10.1002/app.49528] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
215 Jiang K, Teng GD, Chen YQ. MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. J Gene Med 2020;22:e3216. [PMID: 32410261 DOI: 10.1002/jgm.3216] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
216 Kost B, Svyntkivska M, Brzeziński M, Makowski T, Piorkowska E, Rajkowska K, Kunicka-styczyńska A, Biela T. PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials. Colloids and Surfaces B: Biointerfaces 2020;190:110949. [DOI: 10.1016/j.colsurfb.2020.110949] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
217 Moghimiardekani A, Molina BG, Enshaei H, Del Valle LJ, Pérez-Madrigal MM, Estrany F, Alemán C. Semi-Interpenetrated Hydrogels-Microfibers Electroactive Assemblies for Release and Real-Time Monitoring of Drugs. Macromol Biosci 2020;20:e2000074. [PMID: 32449596 DOI: 10.1002/mabi.202000074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
218 Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional Polymer‐Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Adv Mater Interfaces 2020;7:2000225. [DOI: 10.1002/admi.202000225] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
219 Zhang Y, Wang B, Zhao R, Zhang Q, Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater Sci Eng C Mater Biol Appl 2020;115:111099. [PMID: 32600703 DOI: 10.1016/j.msec.2020.111099] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
220 Dreyer JP, Stock RI, Nandi LG, Bellettini IC, Machado VG. Electrospun blends comprised of poly(methyl methacrylate) and ethyl(hydroxyethyl)cellulose functionalized with perichromic dyes. Carbohydrate Polymers 2020;236:115991. [DOI: 10.1016/j.carbpol.2020.115991] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
221 Pu X, Zhou X, Huang Z, Yin G, Chen X. Fabrication of extracellular matrix-coated conductive polypyrrole-poly(l-lactide) fiber-films and their synergistic effect with (nerve growth factor)/(epidermal growth factor) on neurites growth. Chinese Chemical Letters 2020;31:1141-1146. [DOI: 10.1016/j.cclet.2019.07.002] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
222 Liu W, Bi W, Sun Y, Wang L, Yu X, Cheng R, Yu Y, Cui W. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Materials Science and Engineering: C 2020;110:110670. [DOI: 10.1016/j.msec.2020.110670] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 13.7] [Reference Citation Analysis]
223 Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release 2020;321:324-47. [DOI: 10.1016/j.jconrel.2020.02.022] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 21.7] [Reference Citation Analysis]
224 Kurochkin MA, Sindeeva OA, Brodovskaya EP, Gai M, Frueh J, Su L, Sapelkin A, Tuchin VV, Sukhorukov GB. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. Materials Science and Engineering: C 2020;110:110664. [DOI: 10.1016/j.msec.2020.110664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
225 Zhang J, Liu L, Si Y, Yu J, Ding B. Electrospun Nanofibrous Membranes: An Effective Arsenal for the Purification of Emulsified Oily Wastewater. Adv Funct Mater 2020;30:2002192. [DOI: 10.1002/adfm.202002192] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 17.0] [Reference Citation Analysis]
226 Migliorini FL, Teodoro KBR, dos Santos DM, Fonseca FJ, Mattoso LHC, Correa DS. Electrospun nanofibers versus drop casting films for designing an electronic tongue: comparison of performance for monitoring geosmin and 2‐methylisoborneol in water samples. Polym Adv Technol 2020;31:2075-82. [DOI: 10.1002/pat.4930] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
227 Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. Adv Biosyst 2020;4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
228 Lipovka A, Rodriguez R, Bolbasov E, Maryin P, Tverdokhlebov S, Sheremet E. Time-stable wetting effect of plasma-treated biodegradable scaffolds functionalized with graphene oxide. Surface and Coatings Technology 2020;388:125560. [DOI: 10.1016/j.surfcoat.2020.125560] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
229 Zhu J, Chen D, Du J, Chen X, Wang J, Zhang H, Chen S, Wu J, Zhu T, Mo X. Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering 2020;186:107788. [DOI: 10.1016/j.compositesb.2020.107788] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
230 Eskitoros‐togay ŞM, Bulbul YE, Dilsiz N. Controlled release of doxycycline within core/shell poly(ε‐caprolactone) /poly(ethylene oxide) fibers via coaxial electrospinning. J Appl Polym Sci 2020;137:49273. [DOI: 10.1002/app.49273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
231 Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 2020;153:921-30. [PMID: 32151718 DOI: 10.1016/j.ijbiomac.2020.03.036] [Cited by in Crossref: 67] [Cited by in F6Publishing: 56] [Article Influence: 22.3] [Reference Citation Analysis]
232 Fernández-Cervantes I, Rodríguez-Fuentes N, León-Deniz LV, Alcántara Quintana LE, Cervantes-Uc JM, Herrera Kao WA, Cerón-Espinosa JD, Cauich-Rodríguez JV, Castaño-Meneses VM. Cell-free scaffold from jellyfish Cassiopea andromeda (Cnidaria; Scyphozoa) for skin tissue engineering. Mater Sci Eng C Mater Biol Appl 2020;111:110748. [PMID: 32279751 DOI: 10.1016/j.msec.2020.110748] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
233 Kapanya A, Somsunan R, Molloy R, Jiranusornkul S, Leewattanapasuk W, Jongpaiboonkit L, Kong Y. Synthesis of polymeric hydrogels incorporating chlorhexidine gluconate as antibacterial wound dressings. Journal of Biomaterials Science, Polymer Edition 2020;31:895-909. [DOI: 10.1080/09205063.2020.1725862] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
234 Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS Appl Mater Interfaces 2020;12:7905-14. [PMID: 31976653 DOI: 10.1021/acsami.9b20221] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
235 Pandey V, Haider T, Jain P, Gupta PN, Soni V. Silk as a leading-edge biological macromolecule for improved drug delivery. Journal of Drug Delivery Science and Technology 2020;55:101294. [DOI: 10.1016/j.jddst.2019.101294] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
236 Zaarour B, Zhu L, Jin X. A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect 2020;5:1335-48. [DOI: 10.1002/slct.201903981] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
237 Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X, Chang Y, Zheng J, Wu J. Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS Appl Bio Mater 2020;3:965-76. [DOI: 10.1021/acsabm.9b01000] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
238 Sultana T, Gwon JG, Lee BT. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention. Mater Sci Eng C Mater Biol Appl 2020;110:110661. [PMID: 32204089 DOI: 10.1016/j.msec.2020.110661] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
239 Jayakumar A, Jose VK, Lee J. Hydrogels for Medical and Environmental Applications. Small Methods 2020;4:1900735. [DOI: 10.1002/smtd.201900735] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 14.0] [Reference Citation Analysis]
240 Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020;148:1084-97. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
241 Pavlova E, Nikishin I, Bogdanova A, Klinov D, Bagrov D. The miscibility and spatial distribution of the components in electrospun polymer–protein mats. RSC Adv 2020;10:4672-80. [DOI: 10.1039/c9ra10910b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
242 Dhiman NK, Agnihotri S. Hierarchically aligned nano silver/chitosan–PVA hydrogel for point-of-use water disinfection: contact-active mechanism revealed. Environ Sci : Nano 2020;7:2337-50. [DOI: 10.1039/d0en00405g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
243 Balzamo G, Zhang X, Bosbach WA, Mele E. In-situ formation of polyvinylidene fluoride microspheres within polycaprolactone electrospun mats. Polymer 2020;186:122087. [DOI: 10.1016/j.polymer.2019.122087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
244 dos Santos DM, Chagas PA, Leite IS, Inada NM, de Annunzio SR, Fontana CR, Campana-filho SP, Correa DS. Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. International Journal of Biological Macromolecules 2020;142:521-34. [DOI: 10.1016/j.ijbiomac.2019.09.124] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
245 Chen X, Li J. Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Mater Chem Front 2020;4:750-74. [DOI: 10.1039/c9qm00717b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
246 Tyubaeva PM, Zykova AK, Morokov ES, Olkhov AA, Podmasteriev VV, Popov AA. Influence of ozone on structure and physical-mechanical properties of the nonwoven materials based on polyhydroxybutyrate. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY 2020. [DOI: 10.1063/5.0034360] [Reference Citation Analysis]
247 Zhu L, Cheng M, Sun W, Yang J, Li L, Jiang Q. Influence of deformed primitive architecture on mechanical behavior of artificial porous meniscus. Materials & Design 2020;186:108303. [DOI: 10.1016/j.matdes.2019.108303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
248 Ren Y, Wang Z, Wei X, Xu L, Gul RM, Huang S, Xu J, Li Z. Insights into Oxidation of the Ultrahigh Molecular Weight Polyethylene Artificial Joint Related to Lipid Peroxidation. ACS Appl Bio Mater 2020;3:547-53. [DOI: 10.1021/acsabm.9b00960] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
249 Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin‐colin S, Hébraud A. Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Adv Therap 2020;3:1900143. [DOI: 10.1002/adtp.201900143] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
250 Liu X, Chen Y, Mao AS, Xuan C, Wang Z, Gao H, An G, Zhu Y, Shi X, Mao C. Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials 2020;232:119644. [PMID: 31884017 DOI: 10.1016/j.biomaterials.2019.119644] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
251 Ying X, Kang A, Zhu X, Li X. Molecular imprint enhanced specific adsorption visualization on electrospun chromogenic membrane for efficient detection of putrescine. J Appl Polym Sci 2019;136:48186. [DOI: 10.1002/app.48186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
252 Cui Y, Zhu T, Li D, Li Z, Leng Y, Ji X, Liu H, Wu D, Ding J. Bisphosphonate-Functionalized Scaffolds for Enhanced Bone Regeneration. Adv Healthc Mater 2019;8:e1901073. [PMID: 31693315 DOI: 10.1002/adhm.201901073] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
253 Cui L, Zhang J, Zou J, Yang X, Guo H, Tian H, Zhang P, Wang Y, Zhang N, Zhuang X, Li Z, Ding J, Chen X. Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials 2020;230:119617. [PMID: 31771859 DOI: 10.1016/j.biomaterials.2019.119617] [Cited by in Crossref: 125] [Cited by in F6Publishing: 124] [Article Influence: 31.3] [Reference Citation Analysis]
254 Chen X, Lu B, Zhou D, Shao M, Xu W, Zhou Y. Photocrosslinking maleilated hyaluronate/methacrylated poly (vinyl alcohol) nanofibrous mats for hydrogel wound dressings. Int J Biol Macromol 2020;155:903-10. [PMID: 31730992 DOI: 10.1016/j.ijbiomac.2019.11.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
255 Yuan Y, Yuan Q, Wu C, Ding Z, Wang X, Li G, Gu Z, Li L, Xie H. Enhanced Osteoconductivity and Osseointegration in Calcium Polyphosphate Bioceramic Scaffold via Lithium Doping for Bone Regeneration. ACS Biomater Sci Eng 2019;5:5872-80. [PMID: 33405677 DOI: 10.1021/acsbiomaterials.9b00950] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
256 Sohail M, Ashfaq B, Azeem I, Faisal A, Doğan SY, Wang J, Duran H, Yameen B. A facile and versatile route to functional poly(propylene) surfaces via UV-curable coatings. Reactive and Functional Polymers 2019;144:104366. [DOI: 10.1016/j.reactfunctpolym.2019.104366] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
257 Bakhsheshi-rad HR, Akbari M, Ismail AF, Aziz M, Hadisi Z, Pagan E, Daroonparvar M, Chen X. Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface and Coatings Technology 2019;377:124898. [DOI: 10.1016/j.surfcoat.2019.124898] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
258 Ding J, Feng X, Jiang Z, Xu W, Guo H, Zhuang X, Chen X. Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules 2019;20:4258-71. [DOI: 10.1021/acs.biomac.9b01263] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
259 Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 2019;572:118799. [PMID: 31678386 DOI: 10.1016/j.ijpharm.2019.118799] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
260 Mascarenhas BC, Tavares FA, Paris EC. Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from aqueous media. J Appl Polym Sci 2020;137:48561. [DOI: 10.1002/app.48561] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
261 Khalily MA, Patil B, Yilmaz E, Uyar T. Atomic Layer Deposition of Pd Nanoparticles on N‐Doped Electrospun Carbon Nanofibers: Optimization of ORR Activity of Pd‐Based Nanocatalysts by Tuning Their Nanoparticle Size and Loading. ChemNanoMat 2019;5:1540-6. [DOI: 10.1002/cnma.201900483] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
262 Datta P, Vyas V, Dhara S, Chowdhury AR, Barui A. Anisotropy Properties of Tissues: A Basis for Fabrication of Biomimetic Anisotropic Scaffolds for Tissue Engineering. J Bionic Eng 2019;16:842-68. [DOI: 10.1007/s42235-019-0101-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
263 Štular D, Kruse M, Župunski V, Kreinest L, Medved J, Gries T, Blaeser A, Jerman I, Simončič B, Tomšič B. Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning. Fibers Polym 2019;20:1857-68. [DOI: 10.1007/s12221-019-9157-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
264 Artifon W, Pasini SM, Valério A, González SYG, de Arruda Guelli Ulson de Souza SM, de Souza AAU. Harsh environment resistant - antibacterial zinc oxide/Polyetherimide electrospun composite scaffolds. Materials Science and Engineering: C 2019;103:109859. [DOI: 10.1016/j.msec.2019.109859] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
265 Zhu Z, Liu Y, Xue Y, Cheng X, Zhao W, Wang J, He R, Wan Q, Pei X. Tazarotene Released from Aligned Electrospun Membrane Facilitates Cutaneous Wound Healing by Promoting Angiogenesis. ACS Appl Mater Interfaces 2019;11:36141-53. [PMID: 31503444 DOI: 10.1021/acsami.9b13271] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
266 Celebioglu A, Uyar T. Electrospinning of cyclodextrins: hydroxypropyl-alpha-cyclodextrin nanofibers. J Mater Sci 2020;55:404-20. [DOI: 10.1007/s10853-019-03983-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
267 Araujo S, Delpouve N, Delbreilh L, Papkov D, Dzenis Y, Dargent E. Dielectric and calorimetric signatures of chain orientation in strong and tough ultrafine electrospun polyacrylonitrile. Polymer 2019;178:121638. [DOI: 10.1016/j.polymer.2019.121638] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
268 Huang K, Hou J, Gu Z, Wu J. Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomater Sci Eng 2019;5:5384-91. [DOI: 10.1021/acsbiomaterials.9b00990] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
269 T. S. A, V. CS, F. S, Thomas JP. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. International Journal of Biological Macromolecules 2019;135:776-89. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
270 Neri G, Spadaro S, Barreca F, Santangelo S, Neri F, Fazio E. Electrospun Ag/PMA Nanofibrous Scaffold as a Drug Delivery System. CNM 2019;4:32-8. [DOI: 10.2174/2405461504666190416144047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
271 Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Journal of Biomaterials Science, Polymer Edition 2019;30:1308-55. [DOI: 10.1080/09205063.2019.1630699] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
272 Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Ding J, Chen X. Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Adv Funct Mater 2019;29:1903279. [DOI: 10.1002/adfm.201903279] [Cited by in Crossref: 122] [Cited by in F6Publishing: 123] [Article Influence: 30.5] [Reference Citation Analysis]
273 Guo Q, Zhang X. Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization. J Biomater Sci Polym Ed 2019;30:815-31. [PMID: 31044656 DOI: 10.1080/09205063.2019.1603065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
274 Feng X, Li J, Zhang X, Liu T, Ding J, Chen X. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release 2019;302:19-41. [DOI: 10.1016/j.jconrel.2019.03.020] [Cited by in Crossref: 173] [Cited by in F6Publishing: 180] [Article Influence: 43.3] [Reference Citation Analysis]
275 Santangelo S. Electrospun Nanomaterials for Energy Applications: Recent Advances. Applied Sciences 2019;9:1049. [DOI: 10.3390/app9061049] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
276 Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv 2019;9:25712-29. [DOI: 10.1039/c9ra05012d] [Cited by in Crossref: 101] [Cited by in F6Publishing: 108] [Article Influence: 25.3] [Reference Citation Analysis]