BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mortier RA, Barkema HW, De Buck J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev Vet Med 2015;121:189-98. [PMID: 26321657 DOI: 10.1016/j.prevetmed.2015.08.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Al-mamun MA, Smith RL, Schukken YH, Gröhn YT. Modeling of Mycobacterium avium subsp. paratuberculosis dynamics in a dairy herd: An individual based approach. Journal of Theoretical Biology 2016;408:105-17. [DOI: 10.1016/j.jtbi.2016.08.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
2 Bates A, O'Brien R, Liggett S, Griffin F. Control of Mycobacterium avium subsp. paratuberculosis infection on a New Zealand pastoral dairy farm. BMC Vet Res 2019;15:266. [PMID: 31358004 DOI: 10.1186/s12917-019-2014-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bates A, O'Brien R, Liggett S, Griffin F. The effect of sub-clinical infection with Mycobacterium avium subsp. paratuberculosis on milk production in a New Zealand dairy herd. BMC Vet Res 2018;14:93. [PMID: 29540214 DOI: 10.1186/s12917-018-1421-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
4 Ariel O, Brouard JS, Marete A, Miglior F, Ibeagha-Awemu E, Bissonnette N. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle 'in vitro' experimentally infected macrophages. BMC Genomics 2021;22:162. [PMID: 33678157 DOI: 10.1186/s12864-021-07487-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Park HE, Park HT, Jung YH, Yoo HS. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis. PLoS One 2017;12:e0178336. [PMID: 28542507 DOI: 10.1371/journal.pone.0178336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
6 Park HE, Park JS, Park HT, Shin JI, Kim KM, Park SR, Choi JG, Jung M, Kang HL, Baik SC, Lee WK, Yoo HS, Shin MK. Fetuin as a potential serum biomarker to detect subclinical shedder of bovine paratuberculosis. Microb Pathog 2022;169:105675. [PMID: 35820578 DOI: 10.1016/j.micpath.2022.105675] [Reference Citation Analysis]
7 Gupta SK, Maclean PH, Ganesh S, Shu D, Buddle BM, Wedlock DN, Heiser A. Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne's disease. J Dairy Sci 2018;101:10259-70. [PMID: 30197143 DOI: 10.3168/jds.2018-14785] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
8 Nigsch A, Robbe-Austerman S, Stuber TP, Pavinski Bitar PD, Gröhn YT, Schukken YH. Who infects whom?-Reconstructing infection chains of Mycobacterium avium ssp. paratuberculosis in an endemically infected dairy herd by use of genomic data. PLoS One 2021;16:e0246983. [PMID: 33983941 DOI: 10.1371/journal.pone.0246983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Klopfstein M, Leyer A, Berchtold B, Torgerson PR, Meylan M. Limitations in the implementation of control measures for bovine paratuberculosis in infected Swiss dairy and beef herds. PLoS One 2021;16:e0245836. [PMID: 33529202 DOI: 10.1371/journal.pone.0245836] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Camanes G, Joly A, Fourichon C, Ben Romdhane R, Ezanno P. Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Vet Res 2018;49:60. [PMID: 30005698 DOI: 10.1186/s13567-018-0557-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
11 Cirone KM, Lahiri P, Holani R, Tan YL, Arrazuria R, De Buck J, Barkema HW, Cobo ER. Synthetic cathelicidin LL-37 reduces Mycobacterium avium subsp. paratuberculosis internalization and pro-inflammatory cytokines in macrophages. Cell Tissue Res 2020;379:207-17. [PMID: 31478135 DOI: 10.1007/s00441-019-03098-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
12 Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, Mackintosh CG, Manning EJ, Weber MF, Heuer C, Forde TL, Ritter C, Roche S, Corbett CS, Wolf R, Griebel PJ, Kastelic JP, De Buck J. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis 2018;65 Suppl 1:125-48. [PMID: 28941207 DOI: 10.1111/tbed.12723] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
13 Hosseiniporgham S, Cubeddu T, Rocca S, Sechi LA. Identification of Mycobacterium avium subsp. paratuberculosis (MAP) in Sheep Milk, a Zoonotic Problem. Microorganisms 2020;8:E1264. [PMID: 32825389 DOI: 10.3390/microorganisms8091264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Taylor EN, Beckmann M, Villarreal-Ramos B, Vordermeier HM, Hewinson G, Rooke D, Mur LAJ, Koets AP. Metabolomic Changes in Naturally MAP-Infected Holstein-Friesian Heifers Indicate Immunologically Related Biochemical Reprogramming. Metabolites 2021;11:727. [PMID: 34822384 DOI: 10.3390/metabo11110727] [Reference Citation Analysis]
15 Khosravi M, Nouri M, Mohammadi A, Mosavari N, Constable PD. Preparation of immunomagnetic beads coupled with a rhodamine hydrazine immunosensor for the detection of Mycobacterium avium subspecies paratuberculosis in bovine feces, milk, and colostrum. J Dairy Sci 2021;104:6944-60. [PMID: 33814150 DOI: 10.3168/jds.2020-18819] [Reference Citation Analysis]
16 Corbett CS, De Buck J, Orsel K, Barkema HW. Fecal shedding and tissue infections demonstrate transmission of Mycobacterium avium subsp. paratuberculosis in group-housed dairy calves. Vet Res 2017;48:27. [PMID: 28454560 DOI: 10.1186/s13567-017-0431-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
17 Al-Mamun MA, Smith RL, Schukken YH, Gröhn YT. Use of an Individual-based Model to Control Transmission Pathways of Mycobacterium avium Subsp. paratuberculosis Infection in Cattle Herds. Sci Rep 2017;7:11845. [PMID: 28928423 DOI: 10.1038/s41598-017-12078-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
18 Mathevon Y, Foucras G, Falguières R, Corbiere F. Estimation of the sensitivity and specificity of two serum ELISAs and one fecal qPCR for diagnosis of paratuberculosis in sub-clinically infected young-adult French sheep using latent class Bayesian modeling. BMC Vet Res 2017;13:230. [PMID: 28774299 DOI: 10.1186/s12917-017-1145-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
19 Singh J, Dhanoa JK, Choudhary RK, Singh A, Sethi RS, Kaur S, Mukhopadhyay CS. MicroRNA expression profiling in PBMCs of Indian water Buffalo (Bubalus bubalis) infected with Brucella and Johne's disease. ExRNA 2020;2:8. [PMID: 33209990 DOI: 10.1186/s41544-020-00049-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Truyers I, Jennings A. Management and control of Johne's disease in beef suckler herds. In pract 2016;38:347-54. [DOI: 10.1136/inp.i3394] [Reference Citation Analysis]
21 Corbett CS, Barkema HW, De Buck J. Quantifying fecal shedding of Mycobacterium avium ssp. paratuberculosis from calves after experimental infection and exposure. J Dairy Sci 2018;101:1478-87. [PMID: 29224863 DOI: 10.3168/jds.2017-13544] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Ben Romdhane R, Beaunée G, Camanes G, Guatteo R, Fourichon C, Ezanno P. Which phenotypic traits of resistance should be improved in cattle to control paratuberculosis dynamics in a dairy herd: a modelling approach. Vet Res 2017;48:62. [PMID: 29017553 DOI: 10.1186/s13567-017-0468-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Tilocca B, Soggiu A, Greco V, Piras C, Arrigoni N, Ricchi M, Britti D, Urbani A, Roncada P. Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne's Disease). Pathogens 2020;9:E705. [PMID: 32867087 DOI: 10.3390/pathogens9090705] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Zancanaro G, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D; EFSA Panel on Animal Health and Welfare (AHAW). Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): paratuberculosis. EFSA J 2017;15:e04960. [PMID: 32625604 DOI: 10.2903/j.efsa.2017.4960] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
25 McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, O'Grady L, Green MJ, Doherty ML. A review of paratuberculosis in dairy herds - Part 1: Epidemiology. Vet J 2019;246:59-65. [PMID: 30902190 DOI: 10.1016/j.tvjl.2019.01.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
26 Begg DJ, Plain KM, de Silva K, Gurung R, Gunn A, Purdie AC, Whittington RJ. Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol 2018;219:53-62. [PMID: 29778205 DOI: 10.1016/j.vetmic.2018.03.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Corbett CS, de Jong MCM, Orsel K, De Buck J, Barkema HW. Quantifying transmission of Mycobacterium avium subsp. paratuberculosis among group-housed dairy calves. Vet Res 2019;50:60. [PMID: 31429807 DOI: 10.1186/s13567-019-0678-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yamamoto T, Murai K, Hayama Y, Kobayashi S, Nagata R, Kawaji S, Osaki M, Sakakibara SI, Tsutsui T. Evaluation of fecal shedding and antibody response in dairy cattle infected with paratuberculosis using national surveillance data in Japan. Prev Vet Med 2018;149:38-46. [PMID: 29290299 DOI: 10.1016/j.prevetmed.2017.10.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
29 Elmagzoub WA, Adam NM, Idris SM, Mukhtar ME, Abdelaziz SA, Okuni JB, Ojok L, Abd El Wahed A, Eltayeb E, Gameel AA, Eltom KH. Seroprevalence of Mycobacterium avium subsp. paratuberculosis in Dairy Cattle in Khartoum State, Sudan. Vet Sci 2020;7:209. [PMID: 33371490 DOI: 10.3390/vetsci7040209] [Reference Citation Analysis]