BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng C Mater Biol Appl 2021;120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Soleh A, Saisahas K, Promsuwan K, Saichanapan J, Thavarungkul P, Kanatharana P, Meng L, Mak WC, Limbut W. A wireless smartphone-based "tap-and-detect" formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta 2023;254:124169. [PMID: 36549140 DOI: 10.1016/j.talanta.2022.124169] [Reference Citation Analysis]
2 Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. Biosensors (Basel) 2022;12. [PMID: 36551129 DOI: 10.3390/bios12121162] [Reference Citation Analysis]
3 Khan A, Haque MN, Kabiraz DC, Yeasin A, Rashid HA, Sarker AC, Hossain G. A review on Advanced Nanocomposites Materials based Smart Textile Biosensor for Healthcare Monitoring from Human Sweat. Sensors and Actuators A: Physical 2022. [DOI: 10.1016/j.sna.2022.114093] [Reference Citation Analysis]
4 Zhu Q, Cao X, Wang N. Triboelectric Nanogenerators in Sustainable Chemical Sensors. Chemosensors 2022;10:484. [DOI: 10.3390/chemosensors10110484] [Reference Citation Analysis]
5 Wu B, Li M, Ramachandran R, Niu G, Zhang M, Zhao C, Xu Z, Wang F. GQDs Incorporated CoPc Nanorods for Electrochemical Detection of Dopamine and Uric Acid. Adv Materials Inter. [DOI: 10.1002/admi.202200738] [Reference Citation Analysis]
6 Mi Y, Zhao Y, Chen J, Li X, Yang Y, Gao F. Ternary heterostructures of 1D/2D/2D CuCo2S4/CuS/Ti3C2 MXene: Boosted amperometric sensing for chlorpyrifos. Journal of Hazardous Materials 2022;438:129419. [DOI: 10.1016/j.jhazmat.2022.129419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Malecka-baturo K. Advances in Electrochemical Sensors and Biosensors. Coatings 2022;12:1052. [DOI: 10.3390/coatings12081052] [Reference Citation Analysis]
8 Biswas GC, Choudhury S, Rabbani MM, Das J. A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. Chemosensors 2022;10:269. [DOI: 10.3390/chemosensors10070269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Irkham, Kazama K, Einaga Y. Detection of dissolved hydrogen in water using platinum-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry 2022;917:116425. [DOI: 10.1016/j.jelechem.2022.116425] [Reference Citation Analysis]
10 He J, Wang S, Jiang L, Li X, Hong Q, Zhu W, Sun J, Zhang X, Xu Z. Femtosecond Laser One‐Step Direct Writing Electrodes with Ag NPs‐Graphite Carbon Composites for Electrochemical Sensing. Adv Materials Technologies. [DOI: 10.1002/admt.202200210] [Reference Citation Analysis]
11 Gonçalves IM, Rodrigues RO, Moita AS, Hori T, Kaji H, Lima RA, Minas G. Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting 2022;26:e00202. [DOI: 10.1016/j.bprint.2022.e00202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
12 Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M, Jalil AA. Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food Chem Toxicol 2022;165:113169. [PMID: 35618108 DOI: 10.1016/j.fct.2022.113169] [Reference Citation Analysis]
13 Nemčeková K, Svitková V, Gökçe G. Electrochemical aptasensing for the detection of mycotoxins in food commodities. Monatsh Chem. [DOI: 10.1007/s00706-022-02916-w] [Reference Citation Analysis]
14 He S, Zhang Y, Gao J, Nag A, Rahaman A. Integration of Different Graphene Nanostructures with PDMS to Form Wearable Sensors. Nanomaterials (Basel) 2022;12:950. [PMID: 35335764 DOI: 10.3390/nano12060950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Kim SJ, Wang T, Pelletier MH, Walsh WR. 'SMART' implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg 2022;8:117-31. [PMID: 35441100 DOI: 10.21037/jss-21-100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhou Z, Wang J, Li G, Chen Y, Xu T, Zhang X. Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets. Analytica Chimica Acta 2022;1197:339526. [DOI: 10.1016/j.aca.2022.339526] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Brett CMA. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022;27:1497. [PMID: 35268599 DOI: 10.3390/molecules27051497] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Shakibania S, Khakbiz M, Bektas CK, Ghazanfari L, Banizi MT, Lee K. A review of 3D printing technology for rapid medical diagnostic tools. Mol Syst Des Eng 2022;7:315-24. [DOI: 10.1039/d1me00178g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Rani S, Gupta T, Garg V, Bandyopadhyay-ghosh S, Bandhu Ghosh S, Liu G. Microstructural and electrochemical investigations of conductive bio-nanocomposite hydrogel based biosensing device. Materials Today: Proceedings 2022;62:638-643. [DOI: 10.1016/j.matpr.2022.03.626] [Reference Citation Analysis]
20 Mohan JM, Amreen K, Javed A, Dubey SK, Goel S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Current Opinion in Electrochemistry 2021. [DOI: 10.1016/j.coelec.2021.100930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Muzyka K, Xu G. Laser‐induced Graphene in Facts, Numbers, and Notes in View of Electroanalytical Applications: A Review. Electroanalysis 2022;34:574-89. [DOI: 10.1002/elan.202100425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Wang C, Tian Y, Gu Y, Xue K, Sun H, Miao X, Dai L. Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy 2021;85:106030. [DOI: 10.1016/j.nanoen.2021.106030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
23 Sempionatto JR, Montiel VR, Vargas E, Teymourian H, Wang J. Wearable and Mobile Sensors for Personalized Nutrition. ACS Sens 2021;6:1745-60. [PMID: 34008960 DOI: 10.1021/acssensors.1c00553] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
24 Cho H, Lee CS, Kim TH. Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines 2021;9:423. [PMID: 33924719 DOI: 10.3390/biomedicines9040423] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sfragano PS, Pillozzi S, Palchetti I. Electrochemical and PEC platforms for miRNA and other epigenetic markers of cancer diseases: Recent updates. Electrochemistry Communications 2021;124:106929. [DOI: 10.1016/j.elecom.2021.106929] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]