BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Torres MD, Sothiselvam S, Lu TK, de la Fuente-nunez C. Peptide Design Principles for Antimicrobial Applications. Journal of Molecular Biology 2019;431:3547-67. [DOI: 10.1016/j.jmb.2018.12.015] [Cited by in Crossref: 120] [Cited by in F6Publishing: 110] [Article Influence: 40.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang S, Dong Y, Aweya JJ, Xie T, Zeng B, Zhang Y, Liu G. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus. Microbial Pathogenesis 2020;147:104302. [DOI: 10.1016/j.micpath.2020.104302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Duan X, Zhang M, Chen F. Prediction and analysis of antimicrobial peptides from rapeseed protein using in silico approach. J Food Biochem 2021;45:e13598. [PMID: 33595118 DOI: 10.1111/jfbc.13598] [Reference Citation Analysis]
3 Azuma E, Choda N, Odaki M, Yano Y, Matsuzaki K. Improvement of Therapeutic Index by the Combination of Enhanced Peptide Cationicity and Proline Introduction. ACS Infect Dis 2020;6:2271-8. [PMID: 32786298 DOI: 10.1021/acsinfecdis.0c00387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wan F, Kontogiorgos-Heintz D, de la Fuente-Nunez C. Deep generative models for peptide design. Digit Discov 2022;1:195-208. [PMID: 35769205 DOI: 10.1039/d1dd00024a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Shang L, Li J, Song C, Nina Z, Li Q, Chou S, Wang Z, Shan A. Hybrid Antimicrobial Peptide Targeting Staphylococcus aureus and Displaying Anti-infective Activity in a Murine Model. Front Microbiol 2020;11:1767. [PMID: 33042031 DOI: 10.3389/fmicb.2020.01767] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Joodaki F, Martin LM, Greenfield ML. Computational Study of Helical and Helix-Hinge-Helix Conformations of an Anti-Microbial Peptide in Solution by Molecular Dynamics and Vibrational Analysis. J Phys Chem B 2021;125:703-21. [PMID: 33464100 DOI: 10.1021/acs.jpcb.0c07988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Grafskaia E, Pavlova E, Babenko VV, Latsis I, Malakhova M, Lavrenova V, Bashkirov P, Belousov D, Klinov D, Lazarev V. The Hirudo Medicinalis Microbiome Is a Source of New Antimicrobial Peptides. Int J Mol Sci 2020;21:E7141. [PMID: 32992666 DOI: 10.3390/ijms21197141] [Reference Citation Analysis]
8 Ganewatta MS, Wang Z, Tang C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat Rev Chem 2021;5:753-72. [DOI: 10.1038/s41570-021-00325-x] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020;9:E854. [PMID: 33265897 DOI: 10.3390/antibiotics9120854] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Wani NA, Ben Hur D, Kapach G, Stolovicki E, Rotem E, Shai Y. Switching Bond: Generation of New Antimicrobial Peptides via the Incorporation of an Intramolecular Isopeptide Bond. ACS Infect Dis 2021;7:1702-12. [PMID: 34043312 DOI: 10.1021/acsinfecdis.1c00037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhang L. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. J Chem Inf Model 2021;61:4670-86. [PMID: 34473496 DOI: 10.1021/acs.jcim.1c00805] [Reference Citation Analysis]
12 Fathi F, Ghobeh M, Tabarzad M. Anti-Microbial Peptides: Strategies of Design and Development and Their Promising Wound-Healing Activities. Mol Biol Rep. [DOI: 10.1007/s11033-022-07405-1] [Reference Citation Analysis]
13 Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020;11:582779. [PMID: 33178164 DOI: 10.3389/fmicb.2020.582779] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
14 Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00904-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
15 Zhou J, Liu Y, Shen T, Chen L, Zhang C, Cai K, Liu Z, Meng X, Zhang L, Liao C, Wang C. Enhancing the antibacterial activity of PMAP-37 by increasing its hydrophobicity. Chem Biol Drug Des 2019;94:1986-99. [PMID: 31437351 DOI: 10.1111/cbdd.13601] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
16 Chou S, Li Q, Nina Z, Shang L, Li J, Li J, Wang Z, Shan A. Peptides With Triplet-Tryptophan-Pivot Promoted Pathogenic Bacteria Membrane Defects. Front Microbiol 2020;11:537. [PMID: 32328042 DOI: 10.3389/fmicb.2020.00537] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020;18:275-85. [PMID: 31745331 DOI: 10.1038/s41579-019-0288-0] [Cited by in Crossref: 146] [Cited by in F6Publishing: 123] [Article Influence: 48.7] [Reference Citation Analysis]
18 Gan BH, Cai X, Javor S, Köhler T, Reymond JL. Synergistic Effect of Propidium Iodide and Small Molecule Antibiotics with the Antimicrobial Peptide Dendrimer G3KL against Gram-Negative Bacteria. Molecules 2020;25:E5643. [PMID: 33266085 DOI: 10.3390/molecules25235643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria. Toxins (Basel) 2021;13:343. [PMID: 34064808 DOI: 10.3390/toxins13050343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Palmer N, Maasch JRMA, Torres MDT, de la Fuente-Nunez C. Molecular Dynamics for Antimicrobial Peptide Discovery. Infect Immun 2021;89:e00703-20. [PMID: 33558318 DOI: 10.1128/IAI.00703-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Tan R, Wang M, Xu H, Qin L, Wang J, Cui P, Ru S. Improving the Activity of Antimicrobial Peptides Against Aquatic Pathogen Bacteria by Amino Acid Substitutions and Changing the Ratio of Hydrophobic Residues. Front Microbiol 2021;12:773076. [PMID: 34733268 DOI: 10.3389/fmicb.2021.773076] [Reference Citation Analysis]
22 Cai L, Wang L, Fu X, Xia C, Zeng X, Zou Q. ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation. Brief Bioinform 2021;22:bbaa367. [PMID: 33313672 DOI: 10.1093/bib/bbaa367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
23 Hou Y, Wang M, Sun C, Peng C, Zhang Y, Li X. Tunicyclin L, a cyclic peptide from Psammosilene tunicoides: Isolation, characterization, conformational studies and biological activity. Fitoterapia 2020;145:104628. [PMID: 32433930 DOI: 10.1016/j.fitote.2020.104628] [Reference Citation Analysis]
24 Koch P, Schmitt S, Heynisch A, Gumpinger A, Wüthrich I, Gysin M, Shcherbakov D, Hobbie SN, Panke S, Held M. Optimization of the antimicrobial peptide Bac7 by deep mutational scanning. BMC Biol 2022;20:114. [PMID: 35578204 DOI: 10.1186/s12915-022-01304-4] [Reference Citation Analysis]
25 Wojda I, Cytryńska M, Zdybicka-barabas A, Kordaczuk J. Insect Defense Proteins and Peptides. In: Hoeger U, Harris JR, editors. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Cham: Springer International Publishing; 2020. pp. 81-121. [DOI: 10.1007/978-3-030-41769-7_4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. Biochim Biophys Acta Biomembr 2020;1862:183275. [PMID: 32173291 DOI: 10.1016/j.bbamem.2020.183275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Liu Y, Shen T, Chen L, Zhou J, Wang C. Analogs of the Cathelicidin-Derived Antimicrobial Peptide PMAP-23 Exhibit Improved Stability and Antibacterial Activity. Probiotics Antimicrob Proteins 2021;13:273-86. [PMID: 32666297 DOI: 10.1007/s12602-020-09686-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
28 Tan P, Lai Z, Jian Q, Shao C, Zhu Y, Li G, Shan A. Design of Heptad Repeat Amphiphiles Based on Database Filtering and Structure-Function Relationships to Combat Drug-Resistant Fungi and Biofilms. ACS Appl Mater Interfaces 2020;12:2129-44. [PMID: 31887002 DOI: 10.1021/acsami.9b19927] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
29 Wani NA, Stolovicki E, Hur DB, Shai Y. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides. J Med Chem 2022. [PMID: 35290038 DOI: 10.1021/acs.jmedchem.2c00061] [Reference Citation Analysis]
30 Acosta S, Ye Z, Aparicio C, Alonso M, Rodríguez-Cabello JC. Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides. Biomacromolecules 2020;21:4043-52. [PMID: 32786727 DOI: 10.1021/acs.biomac.0c00865] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
31 Capecchi A, Cai X, Personne H, Köhler T, van Delden C, Reymond JL. Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 2021;12:9221-32. [PMID: 34349895 DOI: 10.1039/d1sc01713f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Arqué X, Torres MDT, Patiño T, Boaro A, Sánchez S, de la Fuente-Nunez C. Autonomous Treatment of Bacterial Infections in Vivo Using Antimicrobial Micro- and Nanomotors. ACS Nano 2022. [PMID: 35486889 DOI: 10.1021/acsnano.1c11013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Yu L, Dou S, Ma J, Gong Q, Zhang M, Zhang X, Li M, Zhang W. An Antimicrobial Peptide-Loaded Chitosan/Polyethylene Oxide Nanofibrous Membrane Fabricated by Electrospinning Technology. Front Mater 2021;8:650223. [DOI: 10.3389/fmats.2021.650223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ageitos L, de la Fuente-Nunez C. Antimicrobial Peptides: Potential Therapeutics Against Drug-Resistant Pulmonary Infections. Arch Bronconeumol 2021. [PMID: 34642532 DOI: 10.1016/j.arbres.2021.09.007] [Reference Citation Analysis]
35 Azmiera N, Krasilnikova A, Sahudin S, Al-talib H, Heo C. Antimicrobial peptides isolated from insects and their potential applications. Journal of Asia-Pacific Entomology 2022;25:101892. [DOI: 10.1016/j.aspen.2022.101892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Yang Y, Chen F, Chen HY, Peng H, Hao H, Wang KJ. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. Front Microbiol 2020;11:1589. [PMID: 32849331 DOI: 10.3389/fmicb.2020.01589] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Hussain M, Suo H, Xie Y, Wang K, Wang H, Hou Z, Gao Y, Zhang L, Tao J, Jiang H, Zhu J. Dopamine-Substituted Multidomain Peptide Hydrogel with Inherent Antimicrobial Activity and Antioxidant Capability for Infected Wound Healing. ACS Appl Mater Interfaces 2021;13:29380-91. [PMID: 34128656 DOI: 10.1021/acsami.1c07656] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Wales DJ, Miralles-Comins S, Franco-Castillo I, Cameron JM, Cao Q, Karjalainen E, Alves Fernandes J, Newton GN, Mitchell SG, Sans V. Decoupling manufacturing from application in additive manufactured antimicrobial materials. Biomater Sci 2021;9:5397-406. [PMID: 33988192 DOI: 10.1039/d1bm00430a] [Reference Citation Analysis]
39 Zhou C, Jiang M, Ye X, Liu X, Zhao W, Ma L, Zhou C. Antibacterial Activities of Peptide HF-18 Against Helicobacter pylori and its Virulence Protein CagA. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10372-7] [Reference Citation Analysis]
40 Hu N, Mo XM, Xu SN, Tang HN, Zhou YH, Li L, Zhou HD. A novel antimicrobial peptide derived from human BPIFA1 protein protects against Candida albicans infection. Innate Immun 2022;:17534259221080543. [PMID: 35201913 DOI: 10.1177/17534259221080543] [Reference Citation Analysis]
41 Dos Santos-Silva CA, Tricarico PM, Vilela LMB, Roldan-Filho RS, Amador VC, d'Adamo AP, Rêgo MS, Benko-Iseppon AM, Crovella S. Plant Antimicrobial Peptides as Potential Tool for Topic Treatment of Hidradenitis Suppurativa. Front Microbiol 2021;12:795217. [PMID: 34966375 DOI: 10.3389/fmicb.2021.795217] [Reference Citation Analysis]
42 Sansi MS, Iram D, Zanab S, Vij S, Puniya AK, Singh A, Ashutosh, Meena S. Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis. J Food Biochem 2022;:e14311. [PMID: 35789493 DOI: 10.1111/jfbc.14311] [Reference Citation Analysis]
43 Pedron CN, de Oliveira CS, da Silva AF, Andrade GP, da Silva Pinhal MA, Cerchiaro G, da Silva Junior PI, da Silva FD, Torres MDT, Oliveira VX. The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. European Journal of Pharmaceutical Sciences 2019;136:104952. [DOI: 10.1016/j.ejps.2019.06.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
44 Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Reference Citation Analysis]
45 Qiao Z, Sun H, Zhou Q, Yi L, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. International Journal of Biological Macromolecules 2020;164:845-54. [DOI: 10.1016/j.ijbiomac.2020.07.192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Huang T, Qian Y, Fu X, Huang S, Li Y, Zhou C. De Novo Design of Triblock Amphiphilic Short Antimicrobial Peptides. ACS Appl Polym Mater 2020;2:3988-92. [DOI: 10.1021/acsapm.0c00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA. Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr 2019;1861:182984. [PMID: 31075228 DOI: 10.1016/j.bbamem.2019.05.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
48 Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020;11:590522. [PMID: 33250877 DOI: 10.3389/fmicb.2020.590522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel) 2020;9:E24. [PMID: 31941022 DOI: 10.3390/antibiotics9010024] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 42.0] [Reference Citation Analysis]
50 Yokoo H, Hirano M, Misawa T, Demizu Y. Helical Antimicrobial Peptide Foldamers Containing Non-proteinogenic Amino Acids. ChemMedChem 2021;16:1226-33. [PMID: 33565721 DOI: 10.1002/cmdc.202000940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Yang S, Huang H, Aweya JJ, Zheng Z, Liu G, Zhang Y. PvHS9 is a novel in silico predicted antimicrobial peptide derived from hemocyanin of Penaeus vannamei. Aquaculture 2021;530:735926. [DOI: 10.1016/j.aquaculture.2020.735926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Hitchner MA, Necelis MR, Shirley D, Caputo GA. Effect of Non-natural Hydrophobic Amino Acids on the Efficacy and Properties of the Antimicrobial Peptide C18G. Probiotics Antimicrob Proteins 2021;13:527-41. [PMID: 32889698 DOI: 10.1007/s12602-020-09701-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
53 Pereira JM, Vieira M, Santos SM. Step-by-step design of proteins for small molecule interaction: A review on recent milestones. Protein Sci 2021;30:1502-20. [PMID: 33934427 DOI: 10.1002/pro.4098] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021;:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Shang L, Wu Y, Wei N, Yang F, Wang M, Zhang L, Fei C, Liu Y, Xue F, Gu F. Novel Arginine End-Tagging Antimicrobial Peptides to Combat Multidrug-Resistant Bacteria. ACS Appl Mater Interfaces 2021. [PMID: 34964342 DOI: 10.1021/acsami.1c19305] [Reference Citation Analysis]
56 Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front Microbiol 2019;10:3097. [PMID: 32038544 DOI: 10.3389/fmicb.2019.03097] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
57 Echeverria C, Torres MDT, Fernández-garcía M, de la Fuente-nunez C, Muñoz-bonilla A. Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnology Advances 2020;43:107586. [DOI: 10.1016/j.biotechadv.2020.107586] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
58 Pedron CN, Freire KA, Torres MT, Lima DB, Monteiro ML, Menezes RRPPB, Martins AMC, Oliveira VX. Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent. Parasitology 2020;147:1810-8. [PMID: 33004083 DOI: 10.1017/S0031182020001882] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Taveira GB, de Oliveira Mello É, Simão TLBV, Cherene MB, de Oliveira Carvalho A, Muzitano MF, Lassounskaia E, Pireda S, de Castro Miguel E, Basso LGM, Da Cunha M, da Motta OV, Gomes VM. A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochim Biophys Acta Gen Subj 2022;1866:130218. [PMID: 35905923 DOI: 10.1016/j.bbagen.2022.130218] [Reference Citation Analysis]
60 Ahmed A, Bakovic A, Risner K, Kortchak S, Der Torossian Torres M, de la Fuente-Nunez C, Lu T, Bhalla N, Narayanan A. Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response. Sci Rep 2020;10:21491. [PMID: 33293592 DOI: 10.1038/s41598-020-77990-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Zeng P, Yi L, Xu J, Gao W, Xu C, Chen S, Chan KF, Wong KY. Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii. Biochim Biophys Acta Biomembr 2021;1863:183600. [PMID: 33675719 DOI: 10.1016/j.bbamem.2021.183600] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
62 Gong Z, Pei X, Ren S, Chen X, Wang L, Ma C, Xi X, Chen T, Shaw C, Zhou M. Identification and Rational Design of a Novel Antibacterial Peptide Dermaseptin-AC from the Skin Secretion of the Red-Eyed Tree Frog Agalychnis callidryas. Antibiotics (Basel) 2020;9:E243. [PMID: 32397600 DOI: 10.3390/antibiotics9050243] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
63 Cesaro A, Torres MDT, Gaglione R, Dell'Olmo E, Di Girolamo R, Bosso A, Pizzo E, Haagsman HP, Veldhuizen EJA, de la Fuente-Nunez C, Arciello A. Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma. ACS Nano 2022;16:1880-95. [PMID: 35112568 DOI: 10.1021/acsnano.1c04496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Mayandi V, Xi Q, Leng ET, Koh SK, Jie TY, Barathi VA, Urf Turabe Fazil MH, Somaraju Chalasani ML, Varadarajan J, Ting DSJ, Beuerman RW, Chan LW, Agrawal R, Sebastian TM, Zhou L, Verma NK, Lakshminarayanan R. Rational Substitution of ε-Lysine for α-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin. J Med Chem 2020;63:3522-37. [PMID: 32175733 DOI: 10.1021/acs.jmedchem.9b01846] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
65 Barrett R, White AD. Investigating Active Learning and Meta-Learning for Iterative Peptide Design. J Chem Inf Model 2021;61:95-105. [PMID: 33350829 DOI: 10.1021/acs.jcim.0c00946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Negi SS, Goldblum RM, Braun W, Midoro-Horiuti T. Design of peptides with high affinity binding to a monoclonal antibody as a basis for immunotherapy. Peptides 2021;145:170628. [PMID: 34411692 DOI: 10.1016/j.peptides.2021.170628] [Reference Citation Analysis]
67 Pedron CN, Araújo I, da Silva Junior PI, Dias da Silva F, Torres MDT, Oliveira Junior VX. Repurposing the scorpion venom peptide VmCT1 into an active peptide against Gram-negative ESKAPE pathogens. Bioorganic Chemistry 2019;90:103038. [DOI: 10.1016/j.bioorg.2019.103038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
68 Munhoz VHO, Ferreira CS, Nunes LO, Santos TL, Aisenbrey C, Adão R, de Carvalho Alcântara AF, de Magalhães MTQ, Piló-Veloso D, Resende JM, Bechinger B, Verly RM. Epimers l- and d-Phenylseptin: How the relative stereochemistry affects the peptide-membrane interactions. Biochim Biophys Acta Biomembr 2021;1863:183708. [PMID: 34310911 DOI: 10.1016/j.bbamem.2021.183708] [Reference Citation Analysis]
69 Zhang F, Zhong C, Yao J, Zhang J, Zhang T, Li B, Gou S, Ni J. Antimicrobial peptides–antibiotics combination: An effective strategy targeting drug‐resistant Gram‐negative bacteria. Peptide Science. [DOI: 10.1002/pep2.24261] [Reference Citation Analysis]
70 Martin-Gómez H, Oliver-Cervelló L, Buxadera-Palomero J, Ginebra MP, Mas-Moruno C. Chemically Diverse Multifunctional Peptide Platforms with Antimicrobial and Cell Adhesive Properties. Chembiochem 2021;22:839-44. [PMID: 33094896 DOI: 10.1002/cbic.202000670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
71 Luo X, Ye X, Ding L, Zhu W, Zhao Z, Luo D, Liu N, Sun L, Chen Z. Identification of the scorpion venom-derived antimicrobial peptide Hp1404 as a new antimicrobial agent against carbapenem-resistant Acinetobacter baumannii. Microb Pathog 2021;157:104960. [PMID: 34022355 DOI: 10.1016/j.micpath.2021.104960] [Reference Citation Analysis]
72 Liu Y, Sameen DE, Ahmed S, Dai J, Qin W. Antimicrobial peptides and their application in food packaging. Trends in Food Science & Technology 2021;112:471-83. [DOI: 10.1016/j.tifs.2021.04.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
73 Zakaryan H, Chilingaryan G, Arabyan E, Serobian A, Wang G. Natural antimicrobial peptides as a source of new antiviral agents. J Gen Virol 2021;102. [PMID: 34554085 DOI: 10.1099/jgv.0.001661] [Reference Citation Analysis]
74 Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2020;20:1324-37. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
75 Ma L, Ye X, Sun P, Xu P, Wang L, Liu Z, Huang X, Bai Z, Zhou C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine 2020;55:102775. [PMID: 32403086 DOI: 10.1016/j.ebiom.2020.102775] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
76 Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci 2021;278:119647. [PMID: 34043990 DOI: 10.1016/j.lfs.2021.119647] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
77 Silva ON, Torres MDT, Cao J, Alves ESF, Rodrigues LV, Resende JM, Lião LM, Porto WF, Fensterseifer ICM, Lu TK, Franco OL, de la Fuente-Nunez C. Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proc Natl Acad Sci U S A 2020;117:26936-45. [PMID: 33046640 DOI: 10.1073/pnas.2012379117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
78 Savinov A, Fernandez A, Fields S. Mapping functional regions of essential bacterial proteins with dominant-negative protein fragments. Proc Natl Acad Sci U S A 2022;119:e2200124119. [PMID: 35749361 DOI: 10.1073/pnas.2200124119] [Reference Citation Analysis]
79 Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021;:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Reference Citation Analysis]
80 Arciello A. Host Defence Peptides in Medicinal Chemistry: Identification, Engineering, Characterization and Beyond. Curr Top Med Chem 2020;20:1235-7. [PMID: 32538715 DOI: 10.2174/156802662014200519082814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Freire KA, Torres MT, Lima DB, Monteiro ML, Bezerra de Menezes RRPP, Martins AMC, Oliveira VX Jr. Wasp venom peptide as a new antichagasic agent. Toxicon 2020;181:71-8. [PMID: 32360153 DOI: 10.1016/j.toxicon.2020.04.099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
82 Secrieru A, Costa ICC, O'Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020;25:E1574. [PMID: 32235463 DOI: 10.3390/molecules25071574] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
83 Melo MCR, Maasch JRMA, de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol 2021;4:1050. [PMID: 34504303 DOI: 10.1038/s42003-021-02586-0] [Reference Citation Analysis]
84 Oliveira CS, Torres MT, Pedron CN, Andrade VB, Silva PI Jr, Silva FD, de la Fuente-Nunez C, Oliveira VX Jr. Synthetic Peptide Derived from Scorpion Venom Displays Minimal Toxicity and Anti-infective Activity in an Animal Model. ACS Infect Dis 2021;7:2736-45. [PMID: 34463484 DOI: 10.1021/acsinfecdis.1c00261] [Reference Citation Analysis]
85 Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics 2020;12:E840. [PMID: 32887353 DOI: 10.3390/pharmaceutics12090840] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
86 Lertampaiporn S, Vorapreeda T, Hongsthong A, Thammarongtham C. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs. Genes (Basel) 2021;12:137. [PMID: 33494403 DOI: 10.3390/genes12020137] [Reference Citation Analysis]
87 Pérez C, Díaz-Roa A, Bernal Y, Arenas NE, Kalume DE, Côrtes LMC, da Silva Junior PI, Varela Y, Patarroyo MA, Torres O, Bello FJ. Characterising four Sarconesiopsis magellanica (Diptera: Calliphoridae) larval fat body-derived antimicrobial peptides. Mem Inst Oswaldo Cruz 2021;116:e200587. [PMID: 34287503 DOI: 10.1590/0074-02760200587] [Reference Citation Analysis]
88 Quintieri L, Caputo L, Monaci L, Cavalluzzi MM, Denora N. Lactoferrin-Derived Peptides as a Control Strategy against Skinborne Staphylococcal Biofilms. Biomedicines 2020;8:E323. [PMID: 32883023 DOI: 10.3390/biomedicines8090323] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
89 Yang S, Yuan Z, Aweya JJ, Deng S, Weng W, Zhang Y, Liu G. Antibacterial and antibiofilm activity of peptide PvGBP2 against pathogenic bacteria that contaminate Auricularia auricular culture bags. Food Science and Human Wellness 2022;11:1607-13. [DOI: 10.1016/j.fshw.2022.06.019] [Reference Citation Analysis]
90 de la Fuente-Nunez C. Toward Autonomous Antibiotic Discovery. mSystems 2019;4:e00151-19. [PMID: 31186311 DOI: 10.1128/mSystems.00151-19] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
91 Siriwardena TN, Gan BH, Köhler T, van Delden C, Javor S, Reymond JL. Stereorandomization as a Method to Probe Peptide Bioactivity. ACS Cent Sci 2021;7:126-34. [PMID: 33532575 DOI: 10.1021/acscentsci.0c01135] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
92 Luo J, Feng Z, Jiang W, Jiang X, Chen Y, Lv X, Zhang L. Novel lactotransferrin-derived synthetic peptides suppress cariogenic bacteria in vitro and arrest dental caries in vivo: [Novel lactotransferrin-derived anticaries peptides]. J Oral Microbiol 2021;13:1943999. [PMID: 34234894 DOI: 10.1080/20002297.2021.1943999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
93 Qin H, Fang H, Chen X, Wang L, Ma C, Xi X, Chen T, Shaw C, Zhou M. Exploration of the Structure-Function Relationships of a Novel Frog Skin Secretion-Derived Bioactive Peptide, t-DPH1, through Use of Rational Design, Cationicity Enhancement and In Vitro Studies. Antibiotics (Basel) 2021;10:1529. [PMID: 34943741 DOI: 10.3390/antibiotics10121529] [Reference Citation Analysis]
94 Cavalcante FTT, Cavalcante ALG, de Sousa IG, Neto FS, dos Santos JCS. Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts 2021;11:1222. [DOI: 10.3390/catal11101222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
95 Pardoux É, Boturyn D, Roupioz Y. Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review. Molecules 2020;25:E1998. [PMID: 32344585 DOI: 10.3390/molecules25081998] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
96 Luo X, Ye X, Ding L, Zhu W, Yi P, Zhao Z, Gao H, Shu Z, Li S, Sang M, Wang J, Zhong W, Chen Z. Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens. Front Microbiol 2021;12:684591. [PMID: 34335511 DOI: 10.3389/fmicb.2021.684591] [Reference Citation Analysis]
97 Galli R, Hall MC, Breitenbach ER, Colpani GL, Zanetti M, de Mello JMM, Silva LL, Fiori MA. Antibacterial polyethylene - Ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles. Polymer Testing 2020;89:106554. [DOI: 10.1016/j.polymertesting.2020.106554] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
98 Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020;13:367-90. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
99 Jung H, Chung YJ, Wilton R, Lee CH, Lee BI, Lim J, Lee H, Choi J, Kang H, Lee B, Rozhkova EA, Park CB, Lee J. Silica Nanodepletors: Targeting and Clearing Alzheimer's β‐Amyloid Plaques. Adv Funct Mater 2020;30:1910475. [DOI: 10.1002/adfm.201910475] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
100 Perez JJ, Perez RA, Perez A. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Front Mol Biosci 2021;8:681617. [PMID: 34095231 DOI: 10.3389/fmolb.2021.681617] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
101 Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020;10:326. [PMID: 32733816 DOI: 10.3389/fcimb.2020.00326] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
102 Gong Y, Li H, Wu F, Zhang X, Zhou Y, Zhang S. A short peptide derived from zebrafish AP ‐2 complex subunit mu‐A AP2M1A 354–382 has antimicrobial activity against multi‐drug resistant bacteria. Peptide Science. [DOI: 10.1002/pep2.24258] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Krishnan M, Choi J, Jang A, Kim Y. A Novel Peptide Antibiotic, Pro10-1D, Designed from Insect Defensin Shows Antibacterial and Anti-Inflammatory Activities in Sepsis Models. Int J Mol Sci 2020;21:E6216. [PMID: 32867384 DOI: 10.3390/ijms21176216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
104 Wang X, Yang X, Wang Q, Meng D. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Crit Rev Microbiol 2022;:1-25. [PMID: 35254957 DOI: 10.1080/1040841X.2022.2047008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Gan BH, Siriwardena TN, Javor S, Darbre T, Reymond JL. Fluorescence Imaging of Bacterial Killing by Antimicrobial Peptide Dendrimer G3KL. ACS Infect Dis 2019;5:2164-73. [PMID: 31618574 DOI: 10.1021/acsinfecdis.9b00299] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
106 León Madrazo A, Segura Campos MR. Review of antimicrobial peptides as promoters of food safety: Limitations and possibilities within the food industry. J Food Saf 2020;40. [DOI: 10.1111/jfs.12854] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
107 Sousa MGC, Rezende TMB, Franco OL. Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discov Today 2021;26:2064-74. [PMID: 33741497 DOI: 10.1016/j.drudis.2021.03.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Guo LY, Yan SZ, Tao X, Yang Q, Li Q, Wang TS, Yu SQ, Chen SL. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus Aureus antibiotic-resistant bacterial infection. Mater Sci Eng C Mater Biol Appl 2020;106:110230. [PMID: 31753349 DOI: 10.1016/j.msec.2019.110230] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
109 Agbale CM, Sarfo JK, Galyuon IK, Juliano SA, Silva GGO, Buccini DF, Cardoso MH, Torres MDT, Angeles-Boza AM, de la Fuente-Nunez C, Franco OL. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019;58:3802-12. [PMID: 31448597 DOI: 10.1021/acs.biochem.9b00440] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
110 Torres MDT, Silva AF, Andrade GP, Pedron CN, Cerchiaro G, Ribeiro AO, Oliveira VX Jr, de la Fuente-Nunez C. The wasp venom antimicrobial peptide polybia-CP and its synthetic derivatives display antiplasmodial and anticancer properties. Bioeng Transl Med 2020;5:e10167. [PMID: 33005737 DOI: 10.1002/btm2.10167] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
111 Maharani R, Napitupulu OI, Dirgantara JM, Hidayat AT, Sumiarsa D, Harneti D, Nurlelasari, Supratman U, Fukase K. Synthesis of cyclotetrapeptide analogues of c-PLAI and evaluation of their antimicrobial properties. R Soc Open Sci 2021;8:201822. [PMID: 33959342 DOI: 10.1098/rsos.201822] [Reference Citation Analysis]
112 Manzoor M, Singh J, Gani A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022;373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
113 Maxwell A, Dowson CG, Spencer J. The Molecular Basis of Antibiotic Action and Resistance. J Mol Biol 2019;431:3367-9. [PMID: 31265828 DOI: 10.1016/j.jmb.2019.06.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
114 Oliveira NGJ, Cardoso MH, Velikova N, Giesbers M, Wells JM, Rezende TMB, de Vries R, Franco OL. Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential. Sci Rep 2020;10:9127. [PMID: 32499582 DOI: 10.1038/s41598-020-66164-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019;55:15020-32. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
116 Capecchi A, Reymond J. Peptides in chemical space. Medicine in Drug Discovery 2021;9:100081. [DOI: 10.1016/j.medidd.2021.100081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
117 Eller CH, Raines RT. Antimicrobial Synergy of a Ribonuclease and a Peptide Secreted by Human Cells. ACS Infect Dis 2020;6:3083-8. [PMID: 33054163 DOI: 10.1021/acsinfecdis.0c00594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
118 Yang S, Yuan Z, Aweya JJ, Huang S, Deng S, Shi L, Zheng M, Zhang Y, Liu G. Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. Ultrason Sonochem 2021;77:105676. [PMID: 34315058 DOI: 10.1016/j.ultsonch.2021.105676] [Reference Citation Analysis]
119 Zhao Q, He L, Wang X, Ding X, Li L, Tian Y, Huang A. Characterization of a Novel Antimicrobial Peptide Isolated from Moringa oleifera Seed Protein Hydrolysates and Its Membrane Damaging Effects on Staphylococcus aureus. J Agric Food Chem 2022. [PMID: 35576531 DOI: 10.1021/acs.jafc.2c01335] [Reference Citation Analysis]
120 Sánchez-Acosta YA, Castillo Vargas JA, Ramírez Quintero KJ, Orduz Peralta S, Camargo Rodríguez DO. Peptide derivatives of dermaseptin S4 in fresh bovine semen for bacterial contamination control: Physicochemical and structural characterization, antibacterial potency, and effects on red blood and sperm cells. Reprod Domest Anim 2020;55:905-14. [PMID: 32406577 DOI: 10.1111/rda.13701] [Reference Citation Analysis]
121 Guo X, Yan T, Rao J, Yue X, Pei X, Deng J, Sun W, Yang W, Zhang B, Xie J. Potent Antimicrobial and Antibiofilm Activities of Feleucin-K3 Analogs Modified by α-(4-Pentenyl)-Ala against Multidrug-Resistant Bacteria. Biomolecules 2021;11:761. [PMID: 34069651 DOI: 10.3390/biom11050761] [Reference Citation Analysis]
122 Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022. [PMID: 34984699 DOI: 10.1002/med.21879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
123 Doti N, Mardirossian M, Sandomenico A, Ruvo M, Caporale A. Recent Applications of Retro-Inverso Peptides. Int J Mol Sci 2021;22:8677. [PMID: 34445382 DOI: 10.3390/ijms22168677] [Reference Citation Analysis]
124 Torres MDT, Voskian S, Brown P, Liu A, Lu TK, Hatton TA, de la Fuente-Nunez C. Coatable and Resistance-Proof Ionic Liquid for Pathogen Eradication. ACS Nano 2021;15:966-78. [PMID: 33438392 DOI: 10.1021/acsnano.0c07642] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
125 Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS Nano 2021;15:2143-64. [PMID: 33538585 DOI: 10.1021/acsnano.0c09509] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
126 Wisdom EC, Zhou Y, Chen C, Tamerler C, Snead ML. Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties. ACS Biomater Sci Eng 2020;6:2682-95. [PMID: 32467858 DOI: 10.1021/acsbiomaterials.9b01213] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
127 Krishnan M, Choi J, Choi S, Kim Y. Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia. J Microbiol Biotechnol 2021;31:25-32. [PMID: 33263333 DOI: 10.4014/jmb.2011.11011] [Reference Citation Analysis]
128 Chen Y, Li H, Liu J, Zhong R, Li H, Fang S, Liu S, Lin S. Synthesis and biological evaluation of indole-based peptidomimetics as antibacterial agents against Gram-positive bacteria. Eur J Med Chem 2021;226:113813. [PMID: 34520955 DOI: 10.1016/j.ejmech.2021.113813] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Gao X, Chen Y, Chen Z, Xue Z, Jia Y, guo Q, Ma Q, Zhang M, Chen H. Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism. Food Funct 2019;10:4486-96. [DOI: 10.1039/c9fo00236g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
130 Erviana R, Saengkun Y, Rungsa P, Jangpromma N, Tippayawat P, Klaynongsruang S, Daduang J, Daduang S. Novel Antimicrobial Peptides from a Cecropin-Like Region of Heteroscorpine-1 from Heterometrus laoticus Venom with Membrane Disruption Activity. Molecules 2021;26:5872. [PMID: 34641415 DOI: 10.3390/molecules26195872] [Reference Citation Analysis]
131 Capecchi A, Zhang A, Reymond JL. Populating Chemical Space with Peptides Using a Genetic Algorithm. J Chem Inf Model 2020;60:121-32. [PMID: 31868369 DOI: 10.1021/acs.jcim.9b01014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
132 Jiménez-Vargas JM, Ramírez-Carreto S, Corzo G, Possani LD, Becerril B, Ortiz E. Structural and functional characterization of NDBP-4 family antimicrobial peptides from the scorpion Mesomexovis variegatus. Peptides 2021;141:170553. [PMID: 33862164 DOI: 10.1016/j.peptides.2021.170553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Koch P, Schmitt S, Cardner M, Beerenwinkel N, Panke S, Held M. Discovery of antimicrobials by massively parallelized growth assays (Mex). Sci Rep 2022;12:4097. [PMID: 35260685 DOI: 10.1038/s41598-022-07755-7] [Reference Citation Analysis]
134 Shen C, Lin Y, Mohammadi TN, Masuda Y, Honjoh KI, Miyamoto T. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate. Int J Food Microbiol 2022;378:109802. [PMID: 35752018 DOI: 10.1016/j.ijfoodmicro.2022.109802] [Reference Citation Analysis]
135 Li Y, Wang Y, Chen X, Jiang W, Jiang X, Zeng Y, Li X, Feng Z, Luo J, Zhang L. Antimicrobial peptide GH12 as root canal irrigant inhibits biofilm and virulence of Enterococcus faecalis. Int Endod J 2020;53:948-61. [PMID: 32189340 DOI: 10.1111/iej.13296] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
136 Chen CH, Bepler T, Pepper K, Fu D, Lu TK. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol 2022;75:102718. [PMID: 35395425 DOI: 10.1016/j.copbio.2022.102718] [Reference Citation Analysis]
137 Yap PG, Lai ZW, Tan JS. Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. Beni-Suef Univ J Basic Appl Sci 2022;11. [DOI: 10.1186/s43088-022-00227-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Oliveira GS, Costa RP, Gomes P, Gomes MS, Silva T, Teixeira C. Antimicrobial Peptides as Potential Anti-Tubercular Leads: A Concise Review. Pharmaceuticals (Basel) 2021;14:323. [PMID: 33918182 DOI: 10.3390/ph14040323] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Sha X, Li P, Feng Y, Xia D, Tian X, Wang Z, Yang Y, Mao X, Liu L. Self-Assembled Peptide Nanofibrils Designed to Release Membrane-Lysing Antimicrobial Peptides. ACS Appl Bio Mater 2020;3:3648-55. [DOI: 10.1021/acsabm.0c00281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Souza E Silva P, Ferreira MA, de Moraes LFR, de Barros E, Preza SLE, Cardoso MH, Franco OL, Migliolo L. Synthetic peptides bioinspired in temporin-PTa with antibacterial and antibiofilm activity. Chem Biol Drug Des 2022;100:51-63. [PMID: 35377553 DOI: 10.1111/cbdd.14052] [Reference Citation Analysis]
141 Wubulikasimu A, Huang Y, Wali A, Yili A, Rong M. A designed antifungal peptide with therapeutic potential for clinical drug-resistant Candida albicans. Biochem Biophys Res Commun 2020;533:404-9. [PMID: 32972753 DOI: 10.1016/j.bbrc.2020.08.117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022;:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
143 Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Mater Sci Eng C Mater Biol Appl 2021;128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Reference Citation Analysis]
144 Xu AY, Mcgillivray DJ, Dingley AJ. Active antibacterial coating of cotton fabrics with antimicrobial proteins. Cellulose 2021;28:8077-94. [DOI: 10.1007/s10570-021-03997-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
145 Cruz CHB, Marzuoli I, Fraternali F. Virus-inspired designs of antimicrobial nanocapsules. Faraday Discuss 2021. [PMID: 34596638 DOI: 10.1039/d1fd00041a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 2020;20:e216-30. [PMID: 32653070 DOI: 10.1016/S1473-3099(20)30327-3] [Cited by in Crossref: 113] [Cited by in F6Publishing: 64] [Article Influence: 56.5] [Reference Citation Analysis]
147 Shao C, Zhu Y, Jian Q, Lai Z, Tan P, Li G, Shan A. Cross-Strand Interaction, Central Bending, and Sequence Pattern Act as Biomodulators of Simplified β-Hairpin Antimicrobial Amphiphiles. Small 2021;17:e2003899. [PMID: 33354914 DOI: 10.1002/smll.202003899] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
148 Ross JN, Fields FR, Kalwajtys VR, Gonzalez AJ, O'Connor S, Zhang A, Moran TE, Hammers DE, Carothers KE, Lee SW. Synthetic Peptide Libraries Designed From a Minimal Alpha-Helical Domain of AS-48-Bacteriocin Homologs Exhibit Potent Antibacterial Activity. Front Microbiol 2020;11:589666. [PMID: 33281785 DOI: 10.3389/fmicb.2020.589666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
149 Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19:311-32. [DOI: 10.1038/s41573-019-0058-8] [Cited by in Crossref: 190] [Cited by in F6Publishing: 180] [Article Influence: 95.0] [Reference Citation Analysis]
150 Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging Frontiers in Microbiome Engineering. Trends Immunol 2019;40:952-73. [PMID: 31601521 DOI: 10.1016/j.it.2019.08.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
151 Dean SN, Walper SA. Variational Autoencoder for Generation of Antimicrobial Peptides. ACS Omega 2020;5:20746-54. [PMID: 32875208 DOI: 10.1021/acsomega.0c00442] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
152 Ji F, Zhao Y, Jiang F, Shang D. Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs. Bioorg Chem 2021;119:105544. [PMID: 34953322 DOI: 10.1016/j.bioorg.2021.105544] [Reference Citation Analysis]
153 Miao X, Zhou T, Zhang J, Xu J, Guo X, Hu H, Zhang X, Hu M, Li J, Yang W, Xie J, Xu Z, Mou L. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Biochim Biophys Acta Gen Subj 2020;1864:129532. [PMID: 31953126 DOI: 10.1016/j.bbagen.2020.129532] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
154 Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang Y, Liu H, Gou S, Ni J. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol 2021;186:114470. [PMID: 33610592 DOI: 10.1016/j.bcp.2021.114470] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]