1 |
Liu T, Zhou R, Wu K, Zhu G. Colorimetric method transforms into highly sensitive homogeneous voltammetric sensing strategy for mercury ion based on mercury-stimulated Ti(3)C(2)T(x) MXene nanoribbons@gold nanozyme activity. Anal Chim Acta 2023;1250:340975. [PMID: 36898821 DOI: 10.1016/j.aca.2023.340975] [Reference Citation Analysis]
|
2 |
Pan J, Deng F, Chen J. A fluorescent biosensor for Cd(2+) detection in water samples based on Cd(2+)-fueled wheel DNAzyme walker and its logic gate applications. Sci Total Environ 2023;864:161046. [PMID: 36549523 DOI: 10.1016/j.scitotenv.2022.161046] [Reference Citation Analysis]
|
3 |
Yang QY, Wan CQ, Wang YX, Shen XF, Pang YH. Bismuth-based metal-organic framework peroxidase-mimic nanozyme: Preparation and mechanism for colorimetric-converted ultra-trace electrochemical sensing of chromium ion. J Hazard Mater 2023;451:131148. [PMID: 36889075 DOI: 10.1016/j.jhazmat.2023.131148] [Reference Citation Analysis]
|
4 |
Duan W, Wang J, Peng X, Cao S, Shang J, Qiu Z, Lu X, Zeng J. Rational design of trimetallic AgPt-Fe(3)O(4) nanozyme for catalyst poisoning-mediated CO colorimetric detection. Biosens Bioelectron 2023;223:115022. [PMID: 36563527 DOI: 10.1016/j.bios.2022.115022] [Reference Citation Analysis]
|
5 |
Chen Y, Zhang M, Wang X, Wang X, Majid Z, Huang K, Xu W, Luo Y, Cheng N. A portable 3D-printed pretreatment device combined with graded lateral flow assay for detection of S. aureus. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133601] [Reference Citation Analysis]
|
6 |
Kang Z, Li Z, Kankala RK, Wang S, Chen A. Supercritical Fluid-assisted Fabrication of Pt-modified Cerium Oxide Nanozyme Based on Polymer Nanoreactors for Peroxidase-like and Glucose Detection Characteristics. The Journal of Supercritical Fluids 2023. [DOI: 10.1016/j.supflu.2023.105915] [Reference Citation Analysis]
|
7 |
Peng C, Pei L, Chen S, Song Y, Wang L. A hydrazone-linked covalent organic framework with abundant N and O atoms for detecting heavy metal ions. Journal of Electroanalytical Chemistry 2023. [DOI: 10.1016/j.jelechem.2023.117307] [Reference Citation Analysis]
|
8 |
Jiang W, Wei S, Zhang R. A novel ratiometric fluorescence probe for the detection of copper (II) and silver(I) based on assembling dye-doped silica core-shell nanoparticles with gold nanoclusters. Mikrochim Acta 2023;190:105. [PMID: 36843138 DOI: 10.1007/s00604-023-05677-3] [Reference Citation Analysis]
|
9 |
Feke K, Tadele Alula M. Colorimetric detection of chromium (VI) via its instigation of oxidase-mimic activity of CuO. Spectrochim Acta A Mol Biomol Spectrosc 2023;294:122539. [PMID: 36827865 DOI: 10.1016/j.saa.2023.122539] [Reference Citation Analysis]
|
10 |
Zhu Q, Huang Y, Zhu X, Peng L, Wang H, Gao S, Yang Z, Zhang J, Liu X. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio 2023;19:100568. [PMID: 36846307 DOI: 10.1016/j.mtbio.2023.100568] [Reference Citation Analysis]
|
11 |
He M, Xu X, Wang H, Wu Q, Zhang L, Zhou D, Tong Y, Su X, Liu H. Nanozyme-Based Colorimetric SARS-CoV-2 Nucleic Acid Detection by Naked Eye. Small 2023;:e2208167. [PMID: 36782092 DOI: 10.1002/smll.202208167] [Reference Citation Analysis]
|
12 |
Liu R, Zhang C, Han X, Wu T, Liu R, Sun Y, Jin S. MnO2/graphene supported on Ni foam: an advanced electrode for electrochemical detection of Pb(II). Carbon Lett 2023. [DOI: 10.1007/s42823-023-00470-x] [Reference Citation Analysis]
|
13 |
Hu P, Xia C, Liu B, Feng R, Wang M, Zhu H, Niu X. In situ controllable growth of Ag particles on paper for smartphone optical sensing of Hg2+ based on nanozyme activity stimulation. Talanta 2023;253:124055. [DOI: 10.1016/j.talanta.2022.124055] [Reference Citation Analysis]
|
14 |
Arya K, Kumar A, Mehra S, Divya, Kumar A, Kumar Mehta S, Kataria R. Exploration and removal of multiple metal ions using mixed-linker-architected Zn-MOF in aqueous media. Separation and Purification Technology 2023;307:122551. [DOI: 10.1016/j.seppur.2022.122551] [Reference Citation Analysis]
|
15 |
Shellaiah M, Sun KW. Conjugation of cysteamine functionalized nanodiamond to gold nanoparticles for pH enhanced colorimetric detection of Cr3+ ions demonstrated by real water sample analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;286:121962. [DOI: 10.1016/j.saa.2022.121962] [Reference Citation Analysis]
|
16 |
Ma S, Cao F, Wen X, Xu F, Tian H, Fu X, Dong D. Detection of heavy metal ions using laser-induced breakdown spectroscopy combined with filter paper modified with PtAg bimetallic nanoparticles. Journal of Hazardous Materials 2023;443:130188. [DOI: 10.1016/j.jhazmat.2022.130188] [Reference Citation Analysis]
|
17 |
Fang G, Kang R, Cai S, Ge C. Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: Progress, challenges and prospects. Nano Today 2023;48:101755. [DOI: 10.1016/j.nantod.2023.101755] [Reference Citation Analysis]
|
18 |
Ma X, Feng T, Zhang P, Zhang H, Hu X, Yang Y, Wang Z, Zhang H, Peng D, Li X, Xu J. Downregulation of Peroxidase Activity of Platinum Cube Enables Minute-Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring. Foods 2023;12. [PMID: 36673383 DOI: 10.3390/foods12020291] [Reference Citation Analysis]
|
19 |
Elbasiouny H, Amer NS, Dawoud SFM, Zedan AMG, Elbehiry F. DNA-Nanosensors for Environmental Monitoring of Heavy Metal Ions. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_17] [Reference Citation Analysis]
|
20 |
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. Science of The Total Environment 2023;854:158771. [DOI: 10.1016/j.scitotenv.2022.158771] [Reference Citation Analysis]
|
21 |
Battison A, Schoeman S, Mama N. A Coumarin-azo Derived Colorimetric Chemosensor for Hg(2+) Detection in Organic and Aqueous Media and its Extended Real-world Applications. J Fluoresc 2023;33:267-85. [PMID: 36413253 DOI: 10.1007/s10895-022-03065-3] [Reference Citation Analysis]
|
22 |
Sun Z, Xing HH, Qing M, Shi Y, Ling Y, Li NB, Luo HQ. From the perspective of high-throughput recognition: Sulfur quantum dots-based multi-channel sensing platform for metal ions detection. Chemical Engineering Journal 2023;452:139594. [DOI: 10.1016/j.cej.2022.139594] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022;17:5947-90. [PMID: 36510620 DOI: 10.2147/IJN.S382796] [Reference Citation Analysis]
|
24 |
Elango D, Devi KD, Jeyabalakrishnan HK, Rajendran K, Thoomatti Haridass VK, Dharmaraj D, Charuchandran CV, Wang W, Fakude M, Mishra R, Vembu K, Wang X. Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. Journal of Agriculture and Food Research 2022;10:100374. [DOI: 10.1016/j.jafr.2022.100374] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
25 |
Yu Z, Zhao H, Ling Z, Zhou J, Zhao X. Two luminescent lanthanide metal–organic frameworks as bifunctional fluorescent probes for Fe3+ and MnO4− ions. Inorganica Chimica Acta 2022;543:121159. [DOI: 10.1016/j.ica.2022.121159] [Reference Citation Analysis]
|
26 |
Zhou X, Zhang J, Liao D, Wu K, Liu H, Zhu G, Yi Y. Self-reduce gold nanoparticles on Ti3C2Tx MXene nanoribbons to highly sensitive colorimetric determination of mercury ion and cysteine based on the mercury- motivated peroxidase mimetic activity. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133271] [Reference Citation Analysis]
|
27 |
Ouyang Y, O'hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosensors and Bioelectronics 2022;218:114768. [DOI: 10.1016/j.bios.2022.114768] [Reference Citation Analysis]
|
28 |
Li L, Ciren D, Chen Z. Gold Nanoparticles-Based Dual-Channel Colorimetric Array Sensors for Discrimination of Metal Ions. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04142] [Reference Citation Analysis]
|
29 |
Li D, Xia L, Li G. Recent Progress on the Applications of Nanozyme in Surface-Enhanced Raman Scattering. Chemosensors 2022;10:462. [DOI: 10.3390/chemosensors10110462] [Reference Citation Analysis]
|
30 |
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coordination Chemistry Reviews 2022;471:214760. [DOI: 10.1016/j.ccr.2022.214760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Kirandeep, Kaur J, Sharma I, Zangrando E, Pal K, Mehta SK, Kataria R. Fabrication of Novel Copper MOF Nanoparticles for Nanozymatic Detection of Mercury Ions. Journal of Materials Research and Technology 2022. [DOI: 10.1016/j.jmrt.2022.10.167] [Reference Citation Analysis]
|
32 |
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. J Agric Food Chem 2022. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Reference Citation Analysis]
|
33 |
Lu Q, Qian J, Xu F, He G, Liu Y, Xia J. Synthesis of 2D fluorescent polyaniline derivatives as multifunctional fluorescent chemosensor. Journal of Polymer Science. [DOI: 10.1002/pol.20220503] [Reference Citation Analysis]
|
34 |
Xi L, Jiang C, Wang F, Zhang X, Huo D, Sun M, Dramou P, He H. Recent Advances in Construction and Application of Metal-Nanozymes in Pharmaceutical Analysis. Crit Rev Anal Chem 2022;:1-19. [PMID: 36183252 DOI: 10.1080/10408347.2022.2128632] [Reference Citation Analysis]
|
35 |
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022;10:1018124. [DOI: 10.3389/fchem.2022.1018124] [Reference Citation Analysis]
|
36 |
Jia T, Li D, Du J, Fang X, Gerasimov V, Ågren H, Chen G. A bimodal type of AgPd Plasmonic Blackbody Nanozyme with boosted catalytic efficacy and synergized photothermal therapy for efficacious tumor treatment in the second biological window. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01627-y] [Reference Citation Analysis]
|
37 |
Ma X, Feng T, Zhang P, Zhang H, Hu X, Yang Y, Wang Z, Zhang H, Peng D, Lai X, Li X, Xu J. Downregulation of peroxidase activity of platinum cube enables minute-time scale colorimetric signaling of hypoxanthine for fish freshness monitoring.. [DOI: 10.21203/rs.3.rs-2059941/v1] [Reference Citation Analysis]
|
38 |
Dai J, Wang L, Xu F, Ma G. Dual-functional Fe-MoS2@AuNPs for simple and sensitive colorimetric-electrochemical coupled detection of Hg2+. Ionics. [DOI: 10.1007/s11581-022-04733-x] [Reference Citation Analysis]
|
39 |
Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. J Agric Food Chem 2022. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Reference Citation Analysis]
|
40 |
Song J, Hong L, Zou X, Alshawwa H, Zhao Y, Zhao H, Liu X, Si C, Zhang Z. A Self-Supplying H(2)O(2) Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. Int J Mol Sci 2022;23. [PMID: 36077503 DOI: 10.3390/ijms231710107] [Reference Citation Analysis]
|
41 |
Zhu Y, Zhou S, Zhu J, Wang P, Wang X, Jia X, Wågberg T, Hu G. Mesoporous carbon decorated with MIL-100(Fe) as an electrochemical platform for ultrasensitive determination of trace cadmium and lead ions in surface water. Ecotoxicol Environ Saf 2022;243:113987. [PMID: 35994906 DOI: 10.1016/j.ecoenv.2022.113987] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Chounechenan SA, Mohammadi A, Khalili B. A highly selective silver ion optical chemosensor based on isoxazolyl-azo pyrimidine: synthesis, spectroscopy, DFT calculations and applications. Anal Methods 2022. [PMID: 35983903 DOI: 10.1039/d2ay00868h] [Reference Citation Analysis]
|
43 |
Pan T, Chen H, Gao X, Wu Z, Ye Y, Shen Y. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. J Hazard Mater 2022;435:128996. [PMID: 35487006 DOI: 10.1016/j.jhazmat.2022.128996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
44 |
Yin J, Zhai H, Wang Y, Wang B, Chu G, Guo Q, Zhang Y, Sun X, Guo Y, Zhang Y. COF/MWCNTs/CLS-Based Electrochemical Sensor for Simultaneous and Sensitive Detection of Multiple Heavy Metal Ions. Food Anal Methods. [DOI: 10.1007/s12161-022-02369-1] [Reference Citation Analysis]
|
45 |
Xu X, Yang S, Wang Y, Qian K. Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Analytical Chemistry 2022;2:100020. [DOI: 10.1016/j.greeac.2022.100020] [Reference Citation Analysis]
|
46 |
Mansur AA, Leonel AG, Krambrock K, Mansur HS. Bifunctional oxidase-peroxidase inorganic nanozyme catalytic cascade for wastewater remediation. Catalysis Today 2022;397-399:129-44. [DOI: 10.1016/j.cattod.2021.11.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Shen Y, Gao X, Zhang Y, Chen H, Ye Y, Wu Y. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. J Hazard Mater 2022;439:129582. [PMID: 35863223 DOI: 10.1016/j.jhazmat.2022.129582] [Reference Citation Analysis]
|
48 |
Başhan V, Çetinkaya AY. Influential Publications and Bibliometric Approach to Heavy Metal Removals for Water. Water Air Soil Pollut 2022;233. [DOI: 10.1007/s11270-022-05720-8] [Reference Citation Analysis]
|
49 |
Gao F, Xiong Z, Jia Y, Li H, Li J. Cu-Boosted One-Pot Nanoarchitectonics for Synthesis of Polydopamine Membranes as Reusable Laccase Mimic. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.07.167] [Reference Citation Analysis]
|
50 |
González-gonzález RB, Flores-contreras EA, González-gonzález E, Torres Castillo NE, Parra-saldívar R, Iqbal HMN. Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00421] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
51 |
Liu S, Wang J, Hu Y, Shi Y, Yang J, Zhang M. Differential Sensing of Antibiotics Using Metal Ions and Gold Nanoclusters Based on TMB–H2O2 System. Chemosensors 2022;10:222. [DOI: 10.3390/chemosensors10060222] [Reference Citation Analysis]
|
52 |
Guo X, Yang F, Jing L, Li J, Li Y, Ding R, Duan B, Zhang X. In-situ generation of highly active and four-in-one CoFe2O4/H2PPOP nanozyme: Mechanism and its application for fast colorimetric detection of Cr (VI). J Hazard Mater 2022;431:128621. [PMID: 35359113 DOI: 10.1016/j.jhazmat.2022.128621] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
53 |
Xu F, Tang Y, Wang H, Deng H, Huang Y, Fan C, Zhao J, Lin C, Lin Y. Using Wool Keratin Derived Metallo-Nanozymes as a Robust Antioxidant Catalyst to Scavenge Reactive Oxygen Species Generated by Smoking. Small 2022;:e2201205. [PMID: 35543499 DOI: 10.1002/smll.202201205] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
54 |
Thakur A, Devi P. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Crit Rev Anal Chem 2022;:1-26. [PMID: 35522585 DOI: 10.1080/10408347.2022.2070838] [Reference Citation Analysis]
|
55 |
Goel A, Tomer N, Bhalla P, Malhotra R. Pyranone based probe for the selective and specific recognition of zinc ions. Inorganica Chimica Acta 2022;534:120828. [DOI: 10.1016/j.ica.2022.120828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Zhang Y, Meng W, Li X, Wang D, Shuang S, Dong C. Dendritic Mesoporous Silica Nanoparticle-Tuned High-Affinity MnO 2 Nanozyme for Multisignal GSH Sensing and Target Cancer Cell Detection. ACS Sustainable Chem Eng 2022;10:5911-21. [DOI: 10.1021/acssuschemeng.2c00259] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
57 |
Xiong Y, Su L, Ye F, Zhao S. Ultrasmall phosphatase-mimicking nanoceria with slight self-colour for nonredox nanozyme-based colorimetric sensing. Analytica Chimica Acta 2022;1200:339604. [DOI: 10.1016/j.aca.2022.339604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
58 |
Ju J, Feng Y, Li H, Xu C, Yang Y. Efficient Separation and Recovery of Vanadium, Titanium, Iron, Magnesium, and Synthesizing Anhydrite from Steel Slag. Mining, Metallurgy & Exploration 2022;39:733-48. [DOI: 10.1007/s42461-022-00552-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
59 |
Matveeva VA, Alekseenko AV, Karthe D, Puzanov AV. Manganese Pollution in Mining-Influenced Rivers and Lakes: Current State and Forecast under Climate Change in the Russian Arctic. Water 2022;14:1091. [DOI: 10.3390/w14071091] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
60 |
Dang V, Tran H, Dieu PTT, Tran M, Dang C, Mai D, Doan V, Nguyen T, Chi TTK, Nguyen T. Effective catalysis and antibacterial activity of silver and gold nanoparticles biosynthesized by Phlogacanthus turgidus. Res Chem Intermed. [DOI: 10.1007/s11164-022-04687-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
61 |
Tan X, Yang Q, Sun X, Sun P, Li H. PdIr Aerogels with Boosted Peroxidase-like Activity for a Sensitive Total Antioxidant Capacity Colorimetric Bioassay. ACS Appl Mater Interfaces 2022;14:10047-54. [PMID: 35133815 DOI: 10.1021/acsami.1c22625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Tian H, Liu J, Guo J, Cao L, He J. L-Cysteine functionalized graphene oxide nanoarchitectonics: A metal-free Hg2+ nanosensor with peroxidase-like activity boosted by competitive adsorption. Talanta 2022;242:123320. [PMID: 35182838 DOI: 10.1016/j.talanta.2022.123320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
63 |
Sanjabi S, Keyvan Rad J, Mahdavian AR. Spiropyran and spironaphthoxazine based opto-chemical probes for instant ion detection with high selectivity and sensitivity to trace amounts of cyanide. Journal of Photochemistry and Photobiology A: Chemistry 2022;424:113626. [DOI: 10.1016/j.jphotochem.2021.113626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
64 |
Qiu Z, Duan W, Cao S, Zeng T, Zhao T, Huang J, Lu X, Zeng J. Highly Specific Colorimetric Probe for Fluoride by Triggering the Intrinsic Catalytic Activity of a AgPt-Fe3O4 Hybrid Nanozyme Encapsulated in SiO2 Shells. Environ Sci Technol 2022. [PMID: 35015525 DOI: 10.1021/acs.est.1c06453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
65 |
Gözde KA, Dulta K, Chauhan P, Chauhan PK. Biomimetic Material-Based Biosensor for Environmental Monitoring. Nanobiosensors for Environmental Monitoring 2022. [DOI: 10.1007/978-3-031-16106-3_10] [Reference Citation Analysis]
|
66 |
Kong Y, Hou G, Gong Z, Zhao F, Han L. Fluorescence detection of malachite green and cations (Cr 3+ , Fe 3+ and Cu 2+ ) by a europium-based coordination polymer. RSC Adv 2022;12:8435-42. [DOI: 10.1039/d2ra00077f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
67 |
Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata A, Tonukari NJ. Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopus oligosporus: Kinetics, thermal inactivation thermodynamics and potential application in laundry industries. Biocatalysis and Agricultural Biotechnology 2022;39:102290. [DOI: 10.1016/j.bcab.2022.102290] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
68 |
Noreldeen HAA, Yang L, Guo XY, He SB, Peng HP, Deng HH, Chen W. A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst 2021;147:101-8. [PMID: 34846387 DOI: 10.1039/d1an01895g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
69 |
Xia X, Yang E, Du X, Cai Y, Chang F, Gao D. Nanostructured Shell-Layer Artificial Antibody with Fluorescence-Tagged Recognition Sites for the Trace Detection of Heavy Metal Ions by Self-Reporting Microsensor Arrays. ACS Appl Mater Interfaces 2021;13:57981-97. [PMID: 34806864 DOI: 10.1021/acsami.1c17762] [Reference Citation Analysis]
|
70 |
Yuan Z, Hou G, Han L. A Terbium‐Based MOF as fluorescent probe for the detection of Malachite Green, Fe 3+ and MnO 4−. Z Anorg Allg Chem . [DOI: 10.1002/zaac.202100301] [Reference Citation Analysis]
|
71 |
Xiao B, Wen Z, Miao S, Gao Q. Utilization of steel slag for cemented tailings backfill: Hydration, strength, pore structure, and cost analysis. Case Studies in Construction Materials 2021;15:e00621. [DOI: 10.1016/j.cscm.2021.e00621] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
|
72 |
Wu M, Cao H, Lu G, Hu BX, Cheng Z, Mo C, Wu J, Wu J. Effects of nanometer alumina and humic acid on the retention and transport of hexavalent chromium in porous media. Ecotoxicol Environ Saf 2021;228:113005. [PMID: 34839141 DOI: 10.1016/j.ecoenv.2021.113005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
73 |
Serebrennikova KV, Komova NS, Berlina AN, Zherdev AV, Dzantiev BB. Tannic Acid-Capped Gold Nanoparticles as a Novel Nanozyme for Colorimetric Determination of Pb2+ Ions. Chemosensors 2021;9:332. [DOI: 10.3390/chemosensors9120332] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
74 |
Khan E. Detecting inorganic arsenic below WHO threshold limit; A comparative study of various sensors. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2021.1998476] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
75 |
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021;146:6684-725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Ko E, Hur W, Son SE, Seong GH, Han DK. Au nanoparticle-hydrogel nanozyme-based colorimetric detection for on-site monitoring of mercury in river water. Mikrochim Acta 2021;188:382. [PMID: 34657212 DOI: 10.1007/s00604-021-05032-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
77 |
Aghayan M, Mahmoudi A, Sazegar MR, Adhami F. A novel colorimetric sensor for naked-eye detection of cysteine and Hg2+ based on "on-off" strategy using Co/Zn-grafted mesoporous silica nanoparticles. Dalton Trans 2021;50:13345-56. [PMID: 34608914 DOI: 10.1039/d1dt02084f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
78 |
He D, Yan M, Sun P, Sun Y, Qu L, Li Z. Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chinese Chemical Letters 2021;32:2994-3006. [DOI: 10.1016/j.cclet.2021.03.078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
|
79 |
He SB, Lin MT, Yang L, Noreldeen HAA, Peng HP, Deng HH, Chen W. Protein-Assisted Osmium Nanoclusters with Intrinsic Peroxidase-like Activity and Extrinsic Antifouling Behavior. ACS Appl Mater Interfaces 2021;13:44541-8. [PMID: 34494808 DOI: 10.1021/acsami.1c11907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
80 |
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
|
81 |
Zheng L, Yang Y, Zhang Y, Zhu T, Wang X. Functionalization of SBA-15 mesoporous silica with bis-schiff base for the selective removal of Pb(II) from water. Journal of Solid State Chemistry 2021;301:122320. [DOI: 10.1016/j.jssc.2021.122320] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
82 |
Slassi S, Aarjane M, Amine A. A novel imidazole‐derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu 2+ in methanol with mixed aqueous medium. Appl Organomet Chem 2021;35. [DOI: 10.1002/aoc.6408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
83 |
Jiang Y, Tang B, Zhao P, Xi M, Li Y. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J Inorg Organomet Polym 2021;31:4628-36. [DOI: 10.1007/s10904-021-02065-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
84 |
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 30.0] [Reference Citation Analysis]
|
85 |
Ma K, Yin J, Kan Y. Synthesis and structure of a new fluorescent sensor based on Ba(II)‐multicarboxylate for detection of Cu 2+ ion. Z Anorg Allg Chem 2021;647:1118-1123. [DOI: 10.1002/zaac.202100011] [Reference Citation Analysis]
|
86 |
Lv SW, Zhao N, Liu JM, Yang FE, Li CY, Wang S. Newly Constructed NiCo2O4 Derived from ZIF-67 with Dual Mimic Enzyme Properties for Colorimetric Detection of Biomolecules and Metal Ions. ACS Appl Mater Interfaces 2021;13:25044-52. [PMID: 34019375 DOI: 10.1021/acsami.1c06705] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
|
87 |
Zou W, Tang Y, Zeng H, Wang C, Wu Y. Porous Co3O4 nanodisks as robust peroxidase mimetics in an ultrasensitive colorimetric sensor for the rapid detection of multiple heavy metal residues in environmental water samples. J Hazard Mater 2021;417:125994. [PMID: 33992021 DOI: 10.1016/j.jhazmat.2021.125994] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
|
88 |
Jouyban A, Amini R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchemical Journal 2021;164:105970. [DOI: 10.1016/j.microc.2021.105970] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
89 |
Liu W, An Z, Qin L, Wang M, Liu X, Yang Y. Construction of a novel ion imprinted film to remove low concentration Cu2+ from aqueous solution. Chemical Engineering Journal 2021;411:128477. [DOI: 10.1016/j.cej.2021.128477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
90 |
Chen G, Qin Y, Jiao L, Huang J, Wu Y, Hu L, Gu W, Xu D, Zhu C. Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021;93:6881-8. [PMID: 33886279 DOI: 10.1021/acs.analchem.1c01217] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
|
91 |
Wei F, Han X. Nanozymes and Their Application Progress in Biomedical Detection. Chinese Journal of Analytical Chemistry 2021;49:581-92. [DOI: 10.1016/s1872-2040(21)60092-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
92 |
Zhang XP, Huang KY, He SB, Peng HP, Xia XH, Chen W, Deng HH. Single gold nanocluster probe-based fluorescent sensor array for heavy metal ion discrimination. J Hazard Mater 2021;405:124259. [PMID: 33097345 DOI: 10.1016/j.jhazmat.2020.124259] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
|
93 |
Yu R, Wang R, Wang Z, Zhu Q, Dai Z. Applications of DNA-nanozyme-based sensors. Analyst 2021;146:1127-41. [PMID: 33507167 DOI: 10.1039/d0an02368j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
94 |
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021;50:1950-72. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
|
95 |
Wong ELS, Vuong KQ, Chow E. Nanozymes for Environmental Pollutant Monitoring and Remediation. Sensors (Basel) 2021;21:E408. [PMID: 33430087 DOI: 10.3390/s21020408] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
|
96 |
Ballesteros CAS, Mercante LA, Alvarenga AD, Facure MHM, Schneider R, Correa DS. Recent trends in nanozymes design: from materials and structures to environmental applications. Mater Chem Front 2021;5:7419-51. [DOI: 10.1039/d1qm00947h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
97 |
Alula MT, Madingwane ML. Colorimetric quantification of chromium (VI) ions based on oxidoreductase-like activity of Fe3O4. Sensors and Actuators B: Chemical 2020;324:128726. [DOI: 10.1016/j.snb.2020.128726] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
98 |
Leonel AG, Mansur AAP, Mansur HS. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Res 2021;190:116693. [PMID: 33302040 DOI: 10.1016/j.watres.2020.116693] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 18.7] [Reference Citation Analysis]
|
99 |
Chang Y, Gao S, Liu M, Liu J. Designing signal-on sensors by regulating nanozyme activity. Anal Methods 2020;12:4708-23. [DOI: 10.1039/d0ay01625j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|