BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, Zhang Z. “US-detonated nano bombs” facilitate targeting treatment of resistant breast cancer. Journal of Controlled Release 2018;274:9-23. [DOI: 10.1016/j.jconrel.2018.01.030] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang R, Yan F, Chen Y. Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor-Specific Nanomedicine. Adv Sci (Weinh) 2018;5:1801175. [PMID: 30581710 DOI: 10.1002/advs.201801175] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
2 Cheng X, Lv X, Xu J, Zheng Y, Wang X, Tang R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur J Pharm Sci 2020;146:105275. [PMID: 32087259 DOI: 10.1016/j.ejps.2020.105275] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
3 Yan Y, Zhang K, Wang H, Liu W, Zhang Z, Liu J, Shi J. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloids Surf B Biointerfaces 2020;186:110700. [PMID: 31821968 DOI: 10.1016/j.colsurfb.2019.110700] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
4 Toro-córdova A, Sanz B, Goya GF. A Concise Review of Nanomaterials for Drug Delivery and Release. CNANO 2020;16:399-412. [DOI: 10.2174/1573413715666190724150816] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, de Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS. A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. J Agric Food Chem 2019;67:4453-62. [PMID: 30933503 DOI: 10.1021/acs.jafc.9b00806] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
6 Shao Y, Guo L, Li A, Zhang K, Liu W, Shi J, Liu J, Zhang Z. US-triggered ultra-sensitive “thrombus constructor” for precise tumor therapy. Journal of Controlled Release 2020;318:136-44. [DOI: 10.1016/j.jconrel.2019.12.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
7 Li R, Chen Z, Dai Z, Yu Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol Med 2021:j. [PMID: 33755377 DOI: 10.20892/j.issn.2095-3941.2020.0328] [Reference Citation Analysis]
8 Liu W, Zhang K, Zhuang L, Liu J, Zeng W, Shi J, Zhang Z. Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2019;184:110536. [PMID: 31639567 DOI: 10.1016/j.colsurfb.2019.110536] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
9 Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022;20:139. [PMID: 35300712 DOI: 10.1186/s12951-022-01243-w] [Reference Citation Analysis]
10 Liu J, Liu W, Zhang K, Shi J, Zhang Z. A Magnetic Drug Delivery System with "OFF-ON" State via Specific Molecular Recognition and Conformational Changes for Precise Tumor Therapy. Adv Healthc Mater 2020;9:e1901316. [PMID: 31858730 DOI: 10.1002/adhm.201901316] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
11 Abnous K, Danesh NM, Ramezani M, Charbgoo F, Bahreyni A, Taghdisi SM. Targeted delivery of doxorubicin to cancer cells by a cruciform DNA nanostructure composed of AS1411 and FOXM1 aptamers. Expert Opin Drug Deliv 2018;15:1045-52. [PMID: 30269603 DOI: 10.1080/17425247.2018.1530656] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
12 Xu L, Tong G, Song Q, Zhu C, Zhang H, Shi J, Zhang Z. Enhanced Intracellular Ca2+ Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca2+ Homeostasis and Photothermal Therapy. ACS Nano 2018;12:6806-18. [PMID: 29966081 DOI: 10.1021/acsnano.8b02034] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 13.0] [Reference Citation Analysis]
13 Mani G, Kim S, Kim K. Development of Folate-Thioglycolate-Gold Nanoconjugates by Using Citric Acid-PEG Branched Polymer for Inhibition of MCF-7 Cancer Cell Proliferation. Biomacromolecules 2018;19:3257-67. [PMID: 29979877 DOI: 10.1021/acs.biomac.8b00543] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
14 Si P, Shi J, Zhang P, Wang C, Chen H, Mi X, Chu W, Zhai B, Li W. MUC-1 recognition-based activated drug nanoplatform improves doxorubicin chemotherapy in breast cancer. Cancer Lett 2020;472:165-74. [PMID: 31857156 DOI: 10.1016/j.canlet.2019.12.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li Y, Zhai Y, Liu W, Zhang K, Liu J, Shi J, Zhang Z. Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor. J Nanobiotechnology 2019;17:117. [PMID: 31783863 DOI: 10.1186/s12951-019-0550-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]