BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tomazic PV, Birner-Gruenberger R, Leitner A, Obrist B, Spoerk S, Lang-Loidolt D. Nasal mucus proteomic changes reflect altered immune responses and epithelial permeability in patients with allergic rhinitis. J Allergy Clin Immunol 2014;133:741-50. [PMID: 24290289 DOI: 10.1016/j.jaci.2013.09.040] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Michalik M, Samet A, Dmowska-Koroblewska A, Podbielska-Kubera A, Waszczuk-Jankowska M, Struck-Lewicka W, Markuszewski MJ. An Overview of the Application of Systems Biology in an Understanding of Chronic Rhinosinusitis (CRS) Development. J Pers Med 2020;10:E245. [PMID: 33255995 DOI: 10.3390/jpm10040245] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Preianò M, Maggisano G, Murfuni MS, Villella C, Colica C, Fregola A, Pelaia C, Lombardo N, Pelaia G, Savino R, Terracciano R. Rapid Detection and Identification of Antimicrobial Peptide Fingerprints of Nasal Fluid by Mesoporous Silica Particles and MALDI-TOF/TOF Mass Spectrometry: From the Analytical Approach to the Diagnostic Applicability in Precision Medicine. Int J Mol Sci 2018;19:E4005. [PMID: 30545076 DOI: 10.3390/ijms19124005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Ndika J, Airaksinen L, Suojalehto H, Karisola P, Fyhrquist N, Puustinen A, Alenius H. Epithelial proteome profiling suggests the essential role of interferon-inducible proteins in patients with allergic rhinitis. J Allergy Clin Immunol 2017;140:1288-98. [PMID: 28633877 DOI: 10.1016/j.jaci.2017.05.040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
4 Waltl EE, Selb R, Eckl-Dorna J, Mueller CA, Cabauatan CR, Eiwegger T, Resch-Marat Y, Niespodziana K, Vrtala S, Valenta R, Niederberger V. Betamethasone prevents human rhinovirus- and cigarette smoke- induced loss of respiratory epithelial barrier function. Sci Rep 2018;8:9688. [PMID: 29946071 DOI: 10.1038/s41598-018-27022-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
5 Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017;139:1752-61. [PMID: 28583447 DOI: 10.1016/j.jaci.2017.04.010] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 13.2] [Reference Citation Analysis]
6 Wolf A, Liesinger L, Spoerk S, Schittmayer M, Lang-Loidolt D, Birner-Gruenberger R, Tomazic PV. Olfactory cleft proteome does not reflect olfactory performance in patients with idiopathic and postinfectious olfactory disorder: A pilot study. Sci Rep 2018;8:17554. [PMID: 30510230 DOI: 10.1038/s41598-018-35776-8] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol 2014;134:509-20. [PMID: 25085341 DOI: 10.1016/j.jaci.2014.05.049] [Cited by in Crossref: 235] [Cited by in F6Publishing: 230] [Article Influence: 29.4] [Reference Citation Analysis]
8 Jia Z, Liu H, Li W, Xie D, Cheng K, Pi X. Electret filter collects more exhaled albumin than glass condenser: A method comparison based on human study. Medicine (Baltimore) 2018;97:e9789. [PMID: 29384875 DOI: 10.1097/MD.0000000000009789] [Reference Citation Analysis]
9 Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila P, Joenvaara S, Renkonen J, Renkonen R. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep 2015;15:495. [PMID: 25504259 DOI: 10.1007/s11882-014-0495-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
10 Danielewicz H, Gurgul A, Dębińska A, Myszczyszyn G, Szmatoła T, Myszkal A, Jasielczuk I, Drabik-Chamerska A, Hirnle L, Boznański A. Pet ownership in pregnancy and methylation pattern in cord blood. Genes Immun 2021;22:305-12. [PMID: 34642452 DOI: 10.1038/s41435-021-00151-7] [Reference Citation Analysis]
11 Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT, Rosenberg SR, Sharp-King T, White SR, Woodruff PG, Avila PC, Denlinger LC, Holguin F, Lazarus SC, Lugogo N, Moore WC, Peters SP, Que L, Smith LJ, Sorkness CA, Wechsler ME, Wenzel SE, Boushey HA, Huang YJ; National Heart, Lung and Blood Institute's “AsthmaNet”. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 2017;140:63-75. [PMID: 27838347 DOI: 10.1016/j.jaci.2016.08.055] [Cited by in Crossref: 112] [Cited by in F6Publishing: 114] [Article Influence: 18.7] [Reference Citation Analysis]
12 Chung YW, Cha J, Han S, Chen Y, Gucek M, Cho HJ, Nakahira K, Choi AMK, Ryu JH, Yoon JH. Apolipoprotein E and Periostin Are Potential Biomarkers of Nasal Mucosal Inflammation. A Parallel Approach of In Vitro and In Vivo Secretomes. Am J Respir Cell Mol Biol 2020;62:23-34. [PMID: 31194918 DOI: 10.1165/rcmb.2018-0248OC] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
13 Dkhar LK, Bartley J, White D, Seyfoddin A. Intranasal drug delivery devices and interventions associated with post-operative endoscopic sinus surgery. Pharmaceutical Development and Technology 2018;23:282-94. [DOI: 10.1080/10837450.2017.1389956] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
14 London NR Jr, Ramanathan M Jr. The Role of the Sinonasal Epithelium in Allergic Rhinitis. Otolaryngol Clin North Am 2017;50:1043-50. [PMID: 28988814 DOI: 10.1016/j.otc.2017.08.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
15 Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm 2018;553:8-20. [PMID: 30316796 DOI: 10.1016/j.ijpharm.2018.10.029] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
16 Suojalehto H, Kinaret P, Kilpeläinen M, Toskala E, Ahonen N, Wolff H, Alenius H, Puustinen A. Level of Fatty Acid Binding Protein 5 (FABP5) Is Increased in Sputum of Allergic Asthmatics and Links to Airway Remodeling and Inflammation. PLoS One 2015;10:e0127003. [PMID: 26020772 DOI: 10.1371/journal.pone.0127003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
17 Joo NS, Evans IA, Cho HJ, Park IH, Engelhardt JF, Wine JJ. Proteomic analysis of pure human airway gland mucus reveals a large component of protective proteins. PLoS One 2015;10:e0116756. [PMID: 25706550 DOI: 10.1371/journal.pone.0116756] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
18 Assenhöj M, Ward LJ, Ghafouri B, Graff P, Ljunggren SA. Metal exposure from additive manufacturing and its effect on the nasal lavage fluid proteome - a pilot study. PLoS One 2021;16:e0256746. [PMID: 34464420 DOI: 10.1371/journal.pone.0256746] [Reference Citation Analysis]
19 Wåhlén K, Fornander L, Olausson P, Ydreborg K, Flodin U, Graff P, Lindahl M, Ghafouri B. Protein profiles of nasal lavage fluid from individuals with work‐related upper airway symptoms associated with moldy and damp buildings. Indoor Air 2016;26:743-54. [DOI: 10.1111/ina.12257] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
20 Tomazic PV, Birner-gruenberger R, Leitner A, Spoerk S, Lang-loidolt D. Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis. Journal of Proteomics 2016;133:153-60. [DOI: 10.1016/j.jprot.2015.12.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
21 Castano R, Yucesoy B, Johnson VJ, Castellanos L, Cartier A. Inflammatory proteins in nasal lavage of workers exposed to occupational agents. Clin Exp Allergy 2017;47:1566-73. [DOI: 10.1111/cea.13039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
22 Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy 2020;50:135-46. [PMID: 31746062 DOI: 10.1111/cea.13539] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
23 Mahdavinia M. The nasal microbiome: opening new clinical research avenues for allergic disease. Expert Rev Clin Immunol 2018;14:645-7. [PMID: 29999434 DOI: 10.1080/1744666X.2018.1500177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Kim YS, Han D, Kim J, Kim DW, Kim YM, Mo JH, Choi HG, Park JW, Shin HW. In-Depth, Proteomic Analysis of Nasal Secretions from Patients With Chronic Rhinosinusitis and Nasal Polyps. Allergy Asthma Immunol Res 2019;11:691-708. [PMID: 31332980 DOI: 10.4168/aair.2019.11.5.691] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
25 Tomazic PV, Darnhofer B, Birner-Gruenberger R. Nasal mucus proteome and its involvement in allergic rhinitis. Expert Rev Proteomics 2020;17:191-9. [PMID: 32266843 DOI: 10.1080/14789450.2020.1748502] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
26 Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 2017;15:675-87. [PMID: 29021598 DOI: 10.1038/nrmicro.2017.104] [Cited by in Crossref: 108] [Cited by in F6Publishing: 93] [Article Influence: 21.6] [Reference Citation Analysis]
27 Yang Z, Liang C, Wang T, Zou Q, Zhou M, Cheng Y, Peng H, Ji Z, Deng Y, Liao J, Liu H. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis. Biochemical and Biophysical Research Communications 2020;522:61-7. [DOI: 10.1016/j.bbrc.2019.11.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Sande CJ, Mutunga M, Muteti J, Berkley JA, Nokes DJ, Njunge J. Untargeted analysis of the airway proteomes of children with respiratory infections using mass spectrometry based proteomics. Sci Rep 2018;8:13814. [PMID: 30217988 DOI: 10.1038/s41598-018-32072-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Persson C. Airways exudation of plasma macromolecules: Innate defense, epithelial regeneration, and asthma. J Allergy Clin Immunol 2019;143:1271-86. [PMID: 30170125 DOI: 10.1016/j.jaci.2018.07.037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
30 Douglas JE, Lin C, Mansfield CJ, Arayata CJ, Cowart BJ, Spielman AI, Adappa ND, Palmer JN, Cohen NA, Reed DR. Tissue-Dependent Expression of Bitter Receptor TAS2R38 mRNA. Chem Senses 2019;44:33-40. [PMID: 30351347 DOI: 10.1093/chemse/bjy066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
31 Steelant B. Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2020;26:20-6. [PMID: 31688241 DOI: 10.1097/MCP.0000000000000638] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
32 Pokhrel S, Kraemer BR, Lee L, Samardzic K, Mochly-Rosen D. Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants' spike protein-an in silico analysis. PLoS One 2021;16:e0251426. [PMID: 34038453 DOI: 10.1371/journal.pone.0251426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Mulligan JK, Patel K, Williamson T, Reaves N, Carroll W, Stephenson SE, Gao P, Drake RR, Neely BA, Tomlinson S, Schlosser RJ, Atkinson C. C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis. Mucosal Immunol 2018;11:1375-85. [PMID: 29907871 DOI: 10.1038/s41385-018-0048-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
34 Lombardo N, Preianò M, Maggisano G, Murfuni MS, Messina L, Pelaia G, Savino R, Terracciano R. A rapid differential display analysis of nasal swab fingerprints to distinguish allergic from non-allergic rhinitis subjects by mesoporous silica particles and MALDI-TOF mass spectrometry. Proteomics 2017;17. [PMID: 28012241 DOI: 10.1002/pmic.201600215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
35 Mori K, Wada K, Konishi K, Goto Y, Mizuta F, Koda S, Uji T, Ito Y, Nagata C. Cedar Pollinosis and Mortality: A Population-Based Prospective Cohort Study in Japan. J Epidemiol 2019;29:61-4. [PMID: 29937471 DOI: 10.2188/jea.JE20170278] [Reference Citation Analysis]
36 Laux C, Peschel A, Krismer B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol Spectr 2019;7. [PMID: 31004422 DOI: 10.1128/microbiolspec.GPP3-0029-2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
37 Tomazic PV, Birner-Gruenberger R, Leitner A, Darnhofer B, Spoerk S, Lang-Loidolt D. Apolipoproteins have a potential role in nasal mucus of allergic rhinitis patients: a proteomic study. Laryngoscope 2015;125:E91-6. [PMID: 25363381 DOI: 10.1002/lary.25003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
38 Tomazic PV, Liesinger L, Pucher B, Thallinger GG, Leitner A, Spoerk S, Gerstenberger C, Lang-Loidolt D, Birner-Gruenberger R. Comparison of tear proteome in allergic rhinoconjunctivitis patients and controls with respect to pollen season. Allergy 2018;73:1541-3. [PMID: 29574764 DOI: 10.1111/all.13444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Trakaki A, Sturm GJ, Pregartner G, Scharnagl H, Eichmann TO, Trieb M, Knuplez E, Holzer M, Stadler JT, Heinemann A, Sturm EM, Marsche G. Allergic rhinitis is associated with complex alterations in high-density lipoprotein composition and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:1280-92. [PMID: 31185305 DOI: 10.1016/j.bbalip.2019.06.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
40 Li X, Song L, Zhu S, Xiao Y, Huang Y, Hua Y, Chu Q, Ren Z. Two Strains of Lactobacilli Effectively Decrease the Colonization of VRE in a Mouse Model. Front Cell Infect Microbiol 2019;9:6. [PMID: 30761273 DOI: 10.3389/fcimb.2019.00006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
41 Suojalehto H, Lindström I, Wolff H, Puustinen A. Nasal protein profiles in work-related asthma caused by different exposures. Allergy 2018;73:653-63. [PMID: 28960398 DOI: 10.1111/all.13325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Guo C, Chen G, Ge R. IL-23, rather than IL-17, is crucial for the development of ovalbumin-induced allergic rhinitis. Mol Immunol 2015;67:436-43. [PMID: 26239416 DOI: 10.1016/j.molimm.2015.07.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
43 Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: The role of Staphylococcus aureus protease-like proteins. Allergy 2019;74:2077-86. [PMID: 30888697 DOI: 10.1111/all.13783] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
44 Trakaki A, Marsche G. High-Density Lipoprotein (HDL) in Allergy and Skin Diseases: Focus on Immunomodulating Functions. Biomedicines 2020;8:E558. [PMID: 33271807 DOI: 10.3390/biomedicines8120558] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
45 Anderson CE, Buser JR, Fleming AM, Strauch EM, Ladd PD, Englund J, Baker D, Yager P. An integrated device for the rapid and sensitive detection of the influenza hemagglutinin. Lab Chip 2019;19:885-96. [PMID: 30724293 DOI: 10.1039/c8lc00691a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
46 Sturm EM, Knuplez E, Marsche G. Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021;22:4377. [PMID: 33922158 DOI: 10.3390/ijms22094377] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]