BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Perumal V, Hashim U. Advances in biosensors: Principle, architecture and applications. J Appl Biomed 2014;12:1-15. [DOI: 10.1016/j.jab.2013.02.001] [Cited by in Crossref: 238] [Cited by in F6Publishing: 163] [Article Influence: 29.8] [Reference Citation Analysis]
Number Citing Articles
1 Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B1 in Edible Oil: A Mini Review. Molecules 2022;27:6141. [DOI: 10.3390/molecules27196141] [Reference Citation Analysis]
2 Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. Sci Total Environ 2022;838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Tran Ngoc Huy D, Iswanto AH, Catalan Opulencia MJ, Al-Saikhan F, Timoshin A, Abed AM, Ahmad I, Blinova SA, Hammid AT, Mustafa YF, Van Tuan P. Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein. Crit Rev Anal Chem 2022;:1-15. [PMID: 35969067 DOI: 10.1080/10408347.2022.2099221] [Reference Citation Analysis]
4 Dayananda B, Cozzolino D. Beyond the Black Box—Practical Considerations on the Use of Chemometrics Combined with Sensing Technologies in Food Science Applications. Chemosensors 2022;10:323. [DOI: 10.3390/chemosensors10080323] [Reference Citation Analysis]
5 Velusamy K, Periyasamy S, Kumar PS, Rangasamy G, Nisha Pauline JM, Ramaraju P, Mohanasundaram S, Nguyen Vo DV. Biosensor for heavy metals detection in wastewater: A review. Food Chem Toxicol 2022;:113307. [PMID: 35917955 DOI: 10.1016/j.fct.2022.113307] [Reference Citation Analysis]
6 Salmasi Z, Rouhi N, Safarpour H, Zebardast N, Zare H. The Recent Progress in DNAzymes-Based Aptasensors for Thrombin Detection. Crit Rev Anal Chem 2022;:1-22. [PMID: 35867568 DOI: 10.1080/10408347.2022.2098671] [Reference Citation Analysis]
7 Hazra RS, Hasan Khan MR, Kale N, Tanha T, Khandare J, Ganai S, Quadir M. Bioinspired Materials for Wearable Devices and Point-of-Care Testing of Cancer. ACS Biomater Sci Eng 2022. [PMID: 35679474 DOI: 10.1021/acsbiomaterials.1c01208] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ettadili F, Azriouil M, Matrouf M, Laghrib F, Saqrane S, Farahi A, Bakasse M, Lahrich S, Mhammedi ME. Electrochemical determination of ornidazole at silver electrode: analytical application in human blood. Chemical Data Collections 2022;39:100850. [DOI: 10.1016/j.cdc.2022.100850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hegde SS, Bhat BR. Dengue detection: Advances and challenges in diagnostic technology. Biosensors and Bioelectronics: X 2022;10:100100. [DOI: 10.1016/j.biosx.2021.100100] [Reference Citation Analysis]
10 Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116686] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kazemi Y, Dehghani S, Nosrati R, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sci 2022;300:120593. [PMID: 35500679 DOI: 10.1016/j.lfs.2022.120593] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems – A review. Journal of Environmental Management 2022;308:114655. [DOI: 10.1016/j.jenvman.2022.114655] [Reference Citation Analysis]
13 Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv Mater 2022;:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Akgönüllü S, Özgür E, Denizli A. Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. Chemosensors 2022;10:106. [DOI: 10.3390/chemosensors10030106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Malik MH, Tsiamis A, Zangl H, Binder A, Mitra S, Roshanghias A. Die-Level Thinning for Flip-Chip Integration on Flexible Substrates. Electronics 2022;11:849. [DOI: 10.3390/electronics11060849] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Park H, Baek S, Sen A, Jung B, Shim J, Park YC, Lee LP, Kim YJ, Kim S. Ultrasensitive and Selective Field-Effect Transistor-Based Biosensor Created by Rings of MoS2 Nanopores. ACS Nano 2022;16:1826-35. [PMID: 34965087 DOI: 10.1021/acsnano.1c08255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gauthier V, Lemarquand A, Caplain E, Wilkie-Chancellier N, Serfaty S. Ultrasonic microrheology for ex vivo skin explants monitoring: A proof of concept. Biosens Bioelectron 2022;198:113831. [PMID: 34864245 DOI: 10.1016/j.bios.2021.113831] [Reference Citation Analysis]
18 Zhu P, Peng H, Rwei AY. Flexible, wearable biosensors for digital health. Medicine in Novel Technology and Devices 2022. [DOI: 10.1016/j.medntd.2022.100118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Lopes LC, Santos A, Bueno PR. An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sensors and Actuators Reports 2022. [DOI: 10.1016/j.snr.2022.100087] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Casari Bariani G, Zhou L, Poggesi S, Manzano M, Ionescu RE. Patterning Large-Scale Nanostructured Microarrays on Coverslip for Sensitive Plasmonic Detection of Aqueous Gliadin Traces. Chemosensors 2022;10:38. [DOI: 10.3390/chemosensors10020038] [Reference Citation Analysis]
21 Khosravi Ardakani H, Gerami M, Chashmpoosh M, Omidifar N, Gholami A, Huyut Z. Recent Progress in Nanobiosensors for Precise Detection of Blood Glucose Level. Biochemistry Research International 2022;2022:1-12. [DOI: 10.1155/2022/2964705] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022;196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
23 Prakash MD, Nihal SL, Ahmadsaidulu S, Swain R, Panigrahy AK. Design and Modelling of Highly Sensitive Glucose Biosensor for Lab-on-chip Applications. Silicon. [DOI: 10.1007/s12633-021-01543-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
24 Augustín M, Pfeifer R, Barek J, Vyskočil V. Comparison of two pyrolytic graphite representatives in the construction of hybrid electrochemical DNA biosensors for monitoring DNA damage. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116095] [Reference Citation Analysis]
25 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kamali P, Zandi M, Ghasemzadeh-Moghaddam H, Fani M. Comparison between various biosensor methods for human T-lymphotropic virus-1 (HTLV-1) detection. Mol Biol Rep 2021. [PMID: 34797491 DOI: 10.1007/s11033-021-06959-w] [Reference Citation Analysis]
27 Zhong Y, Wang X, Zha R, Wang C, Zhang H, Wang Y, Li C. Dual-wavelength responsive photoelectrochemical aptasensor based on ionic liquid functionalized Zn-MOFs and noble metal nanoparticles for the simultaneous detection of multiple tumor markers. Nanoscale 2021. [PMID: 34757368 DOI: 10.1039/d1nr05782k] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coordination Chemistry Reviews 2021;446:214111. [DOI: 10.1016/j.ccr.2021.214111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Perdomo SA, Marmolejo-tejada JM, Jaramillo-botero A. Review—Bio-Nanosensors: Fundamentals and Recent Applications. J Electrochem Soc 2021;168:107506. [DOI: 10.1149/1945-7111/ac2972] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
30 da Silva Junior AG, Frias IAM, Lima-Neto RG, Sá SR, Oliveira MDL, Andrade CAS. Concanavalin A differentiates gram-positive bacteria through hierarchized nanostructured transducer. Microbiol Res 2021;251:126834. [PMID: 34364021 DOI: 10.1016/j.micres.2021.126834] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021;192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
32 Shahbazi N, Zare-Dorabei R, Naghib SM. Multifunctional nanoparticles as optical biosensing probe for breast cancer detection: A review. Mater Sci Eng C Mater Biol Appl 2021;127:112249. [PMID: 34225888 DOI: 10.1016/j.msec.2021.112249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
33 Fan R, Du J, Park KW, Chang LH, Strieter ER, Andrew TL. Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors. ACS Appl Polym Mater 2021;3:2561-7. [PMID: 34296186 DOI: 10.1021/acsapm.1c00140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Gobalu K, Vasudevan M, Gopinath SCB, Perumal V, Ovinis M. Molybdenum disulphide/cellulose acetate nanofiber composite on screen printed electrodes for detecting cardiac troponin by electrical impedance spectroscopy. Cellulose 2021;28:5761-74. [DOI: 10.1007/s10570-021-03911-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng 2021;7:2015-42. [PMID: 33861079 DOI: 10.1021/acsbiomaterials.1c00080] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
36 Botewad SN, Gaikwad DK, Girhe NB, Thorat HN, Pawar PP. Urea biosensors: A comprehensive review. Biotechnol Appl Biochem 2021. [PMID: 33847399 DOI: 10.1002/bab.2168] [Reference Citation Analysis]
37 Cavalcante FTT, de A. Falcão IR, da S. Souza JE, Rocha TG, de Sousa IG, Cavalcante ALG, de Oliveira ALB, de Sousa MCM, dos Santos JCS. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021;2:149-84. [DOI: 10.3390/electrochem2010012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
38 Hemaja V, Panda DK. Dielectric Modulated Enhancement Mode N-Polar GaN MIS-HEMT Biosensor for Label Free Detection. ECS J Solid State Sci Technol 2021;10:035006. [DOI: 10.1149/2162-8777/abea5c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Vieira WT, de Farias MB, Spaolonzi MP, da Silva MGC, Adeodato Vieira MG. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. Journal of Environmental Chemical Engineering 2021;9:104558. [DOI: 10.1016/j.jece.2020.104558] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
40 Vozgirdaite D, Ben Halima H, Bellagambi FG, Alcacer A, Palacio F, Jaffrezic-renault N, Zine N, Bausells J, Elaissari A, Errachid A. Development of an ImmunoFET for Analysis of Tumour Necrosis Factor-α in Artificial Saliva: Application for Heart Failure Monitoring. Chemosensors 2021;9:26. [DOI: 10.3390/chemosensors9020026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
41 Abid SA, Ahmed Muneer A, Al-Kadmy IMS, Sattar AA, Beshbishy AM, Batiha GE, Hetta HF. Biosensors as a future diagnostic approach for COVID-19. Life Sci 2021;273:119117. [PMID: 33508293 DOI: 10.1016/j.lfs.2021.119117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
42 Ali Q, Ahmar S, Sohail MA, Kamran M, Ali M, Saleem MH, Rizwan M, Ahmed AM, Mora-Poblete F, do Amaral Júnior AT, Mubeen M, Ali S. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environ Sci Pollut Res Int 2021;28:9002-19. [PMID: 33464530 DOI: 10.1007/s11356-021-12419-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
43 Režek Jambrak A, Nutrizio M, Djekić I, Pleslić S, Chemat F. Internet of Nonthermal Food Processing Technologies (IoNTP): Food Industry 4.0 and Sustainability. Applied Sciences 2021;11:686. [DOI: 10.3390/app11020686] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
44 Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y, Soutis C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses. Adv Mater 2021;33:e2005448. [PMID: 33230875 DOI: 10.1002/adma.202005448] [Cited by in Crossref: 51] [Cited by in F6Publishing: 60] [Article Influence: 51.0] [Reference Citation Analysis]
45 Vasudevan M, Tai MJ, Perumal V, Gopinath SC, Murthe SS, Ovinis M, Mohamed NM, Joshi N. Cellulose acetate-MoS2 nanopetal hybrid: A highly sensitive and selective electrochemical aptasensor of Troponin I for the early diagnosis of Acute Myocardial Infarction. Journal of the Taiwan Institute of Chemical Engineers 2021;118:245-53. [DOI: 10.1016/j.jtice.2021.01.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
46 Haleem A, Javaid M, Singh RP, Suman R, Rab S. Biosensors applications in medical field: A brief review. Sensors International 2021;2:100100. [DOI: 10.1016/j.sintl.2021.100100] [Cited by in Crossref: 14] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
47 Sá SR, Silva Junior AG, Lima-neto RG, Andrade CA, Oliveira MD. Lectin-based impedimetric biosensor for differentiation of pathogenic candida species. Talanta 2020;220:121375. [DOI: 10.1016/j.talanta.2020.121375] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
48 Vasudevan M, Tai MJY, Perumal V, Gopinath SCB, Murthe SS, Ovinis M, Mohamed NM, Joshi N. Highly sensitive and selective acute myocardial infarction detection using aptamer-tethered MoS2 nanoflower and screen-printed electrodes. Biotechnol Appl Biochem 2020. [PMID: 33140493 DOI: 10.1002/bab.2060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ji C, Zhou Y, Leblanc RM, Peng Z. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens 2020;5:2724-41. [PMID: 32812427 DOI: 10.1021/acssensors.0c01556] [Cited by in Crossref: 102] [Cited by in F6Publishing: 107] [Article Influence: 51.0] [Reference Citation Analysis]
50 Flauzino JMR, Pimentel EL, Alves LM, Madurro JM, Brito‐madurro AG. A Novel and Reusable Electrochemical Genosensor for Detection of Beef Adulteration. Electroanalysis 2021;33:296-303. [DOI: 10.1002/elan.202060029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
51 Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020;187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
52 Rezaei Z, Mahmoudifard M. Pivotal role of electrospun nanofibers in microfluidic diagnostic systems - a review. J Mater Chem B 2019;7:4602-19. [PMID: 31364667 DOI: 10.1039/c9tb00682f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
53 Sonawane JM, Ezugwu CI, Ghosh PC. Microbial Fuel Cell-Based Biological Oxygen Demand Sensors for Monitoring Wastewater: State-of-the-Art and Practical Applications. ACS Sens 2020;5:2297-316. [PMID: 32786393 DOI: 10.1021/acssensors.0c01299] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
54 Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, Yaashikaa PR. Methods of detection of food-borne pathogens: a review. Environ Chem Lett 2021;19:189-207. [DOI: 10.1007/s10311-020-01072-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
55 Zhang L, Guo W, Lu Y. Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications. Biotechnol J 2020;15:2000187. [DOI: 10.1002/biot.202000187] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
56 Kordasht HK, Hassanpour S, Baradaran B, Nosrati R, Hashemzaei M, Mokhtarzadeh A, la Guardia M. Biosensing of microcystins in water samples; recent advances. Biosens Bioelectron 2020;165:112403. [PMID: 32729523 DOI: 10.1016/j.bios.2020.112403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
57 Rubio-govea R, Hickey DP, García-morales R, Rodriguez-delgado M, Domínguez-rovira MA, Minteer SD, Ornelas-soto N, García-garcía A. MoS2 nanostructured materials for electrode modification in the development of a laccase based amperometric biosensor for non-invasive dopamine detection. Microchemical Journal 2020;155:104792. [DOI: 10.1016/j.microc.2020.104792] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
58 Hajji H, Kolsi L, Ghachem K, Maatki C, Borjini MN. Numerical simulation of a microfluidic biosensor for C-reactive protein detection into a microchannel with considering electrothermal effect. Alexandria Engineering Journal 2020;59:1649-59. [DOI: 10.1016/j.aej.2020.04.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
59 Rajabnejad S, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchemical Journal 2020;155:104722. [DOI: 10.1016/j.microc.2020.104722] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
60 Sharma R, Singh R, Batish A. On mechanical and surface properties of electro-active polymer matrix-based 3D printed functionally graded prototypes. Journal of Thermoplastic Composite Materials. [DOI: 10.1177/0892705720907677] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
61 Ayoib A, Hashim U, Gopinath SCB, Thivina V, Arshad MKM. Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-3337-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
62 Bhattarai P, Hameed S. Basics of Biosensors and Nanobiosensors. In: Wu A, Khan WS, editors. Nanobiosensors. Wiley; 2020. pp. 1-22. [DOI: 10.1002/9783527345137.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Ionescu RE, Poggesi S, Zhou L, Casari Bariani G, Mittapalli R, Adam P, Manzano M. Surface enhanced Raman spectroscopy phylogenetic tree for genosensing of Brettanomyces bruxellensis yeast on nanostructured ultrafine glass supports. Optik 2020;203:163956. [DOI: 10.1016/j.ijleo.2019.163956] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. Journal of Pharmaceutical and Biomedical Analysis 2020;180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
65 Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020;214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Cited by in Crossref: 25] [Cited by in F6Publishing: 41] [Article Influence: 12.5] [Reference Citation Analysis]
66 Ba Hashwan SS, Khir MHBM, Al-douri Y, Ahmed AY. Recent Progress in the Development of Biosensors for Chemicals and Pesticides Detection. IEEE Access 2020;8:82514-27. [DOI: 10.1109/access.2020.2991380] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
67 Kashaninejad N, Yaghoobi M, Pourhassan‐moghaddam M, Bazaz SR, Jin D, Warkiani ME. Biological Diagnosis Based on Microfluidics and Nanotechnology. In: Jiang X, Bai C, Liu M, editors. Nanotechnology and Microfluidics. Wiley; 2020. pp. 211-38. [DOI: 10.1002/9783527818341.ch7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
68 Zaukuu JLZ, Bazar G, Gillay Z, Kovacs Z. Emerging trends of advanced sensor based instruments for meat, poultry and fish quality- a review. Crit Rev Food Sci Nutr 2020;60:3443-60. [PMID: 31793331 DOI: 10.1080/10408398.2019.1691972] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
69 Shafiee A, Ghadiri E, Kassis J, Atala A. Nanosensors for therapeutic drug monitoring: implications for transplantation. Nanomedicine (Lond) 2019;14:2735-47. [PMID: 31617787 DOI: 10.2217/nnm-2019-0150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
70 Burcu Aydın E, Aydın M, Kemal Sezgintürk M. Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. International Journal of Environmental Analytical Chemistry 2020;100:602-22. [DOI: 10.1080/03067319.2019.1672675] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
71 Varnosfaderani ZG, Emamzadeh R, Nazari M, Zarean M. Detection of a prostate cancer cell line using a bioluminescent affiprobe: An attempt to develop a new molecular probe for ex vivo studies. International Journal of Biological Macromolecules 2019;138:755-63. [DOI: 10.1016/j.ijbiomac.2019.07.085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
72 Santana Oliveira I, da Silva Junior AG, de Andrade CAS, Lima Oliveira MD. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Current Opinion in Food Science 2019;29:64-79. [DOI: 10.1016/j.cofs.2019.08.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
73 Golichenari B, Nosrati R, Farokhi-fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Critical Reviews in Biotechnology 2019;39:1056-77. [DOI: 10.1080/07388551.2019.1668348] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
74 Katsarou K, Bardani E, Kallemi P, Kalantidis K. Viral Detection: Past, Present, and Future. Bioessays 2019;41:e1900049. [PMID: 31441081 DOI: 10.1002/bies.201900049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
75 Thangaraj B, Solomon PR, Ranganathan S. Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review. CPD 2019;25:1455-76. [DOI: 10.2174/1381612825666190618154518] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
76 Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019;142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Cited by in Crossref: 28] [Cited by in F6Publishing: 52] [Article Influence: 9.3] [Reference Citation Analysis]
77 Xiang X, Li Y, Ling L, Bao Y, Su Y, Guo X. Label-free and dye-free detection of target DNA based on intrinsic fluorescence of the (3+1) interlocked bimolecular G-quadruplexes. Sensors and Actuators B: Chemical 2019;290:68-72. [DOI: 10.1016/j.snb.2019.03.111] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
78 Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019;581:113349. [PMID: 31254490 DOI: 10.1016/j.ab.2019.113349] [Cited by in Crossref: 46] [Cited by in F6Publishing: 58] [Article Influence: 15.3] [Reference Citation Analysis]
79 Butt MA, Khonina SN, Kazanskiy NL. Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. Journal of Modern Optics 2019;66:1172-8. [DOI: 10.1080/09500340.2019.1609613] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
80 Gharatape A, Yari Khosroushahi A. Optical Biomarker-based Biosensors for Cancer/Infectious Disease Medical Diagnoses. Applied Immunohistochemistry & Molecular Morphology 2019;27:278-86. [DOI: 10.1097/pai.0000000000000586] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
81 Antony N, Unnikrishnan L, Mohanty S, Nayak SK. The imperative role of polymers in enzymatic cholesterol biosensors- an overview. Polymer-Plastics Technology and Materials 2019;58:1713-41. [DOI: 10.1080/25740881.2019.1576197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Fu Y, Luo J, Qin J, Yang M. Screening techniques for the identification of bioactive compounds in natural products. J Pharm Biomed Anal 2019;168:189-200. [PMID: 30825802 DOI: 10.1016/j.jpba.2019.02.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 45] [Article Influence: 8.7] [Reference Citation Analysis]
83 Chae H, Kwak DK, Lee MK, Chi SW, Kim KB. Solid-state nanopore analysis on conformation change of p53TAD-MDM2 fusion protein induced by protein-protein interaction. Nanoscale 2018;10:17227-35. [PMID: 30191243 DOI: 10.1039/c8nr06423g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
84 Cánovas R, Cuartero M, Crespo GA. Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosens Bioelectron 2019;130:110-24. [PMID: 30731344 DOI: 10.1016/j.bios.2019.01.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
85 Rafique B, Iqbal M, Mehmood T, Shaheen MA. Electrochemical DNA biosensors: a review. SR 2019;39:34-50. [DOI: 10.1108/sr-08-2017-0156] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
86 Nunna BB, Mandal D, Lee JU, Zhuang S, Lee ES. Sensitivity Study of Cancer Antigens (CA-125) Detection Using Interdigitated Electrodes Under Microfluidic Flow Condition. BioNanoSci 2019;9:203-14. [DOI: 10.1007/s12668-018-0589-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
87 Luna R, James G, Esteban M, Francisco I. In-silico design of peptide receptor for carboxyhemoglobin recognition. Informatics in Medicine Unlocked 2019;14:1-5. [DOI: 10.1016/j.imu.2019.01.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
88 Liu W, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochemical Engineering Journal 2019;141:182-9. [DOI: 10.1016/j.bej.2018.10.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
89 Supraja P, Sudarshan V, Tripathy S, Agrawal A, Singh SG. Label free electrochemical detection of cardiac biomarker troponin T using ZnSnO 3 perovskite nanomaterials. Anal Methods 2019;11:744-51. [DOI: 10.1039/c8ay02617c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
90 Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Adv 2019;1:4560-77. [DOI: 10.1039/c9na00491b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 10.7] [Reference Citation Analysis]
91 Kumar N, Hu Y, Singh S, Mizaikoff B. Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst 2018;143:359-73. [PMID: 29271425 DOI: 10.1039/c7an00983f] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
92 Johnson J, Atkin D, Lee K, Sell M, Chandra S. Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Sci 2019;150:40-6. [PMID: 30576917 DOI: 10.1016/j.meatsci.2018.12.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
93 [DOI: 10.1109/iecbes.2018.8626618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
94 Hassanpour S, Baradaran B, de la Guardia M, Baghbanzadeh A, Mosafer J, Hejazi M, Mokhtarzadeh A, Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-3088-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
95 Usman F, Dennis JO, Meriaudeau F, Ayodele OB. Modelling and simulation of surface plasmon resonance breathe acetone sensor based on doped polyaniline–graphene composite. J Phys : Conf Ser 2018;1123:012020. [DOI: 10.1088/1742-6596/1123/1/012020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
96 Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosensors and Bioelectronics 2018;117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
97 Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution 2018;241:212-33. [DOI: 10.1016/j.envpol.2018.05.016] [Cited by in Crossref: 51] [Cited by in F6Publishing: 58] [Article Influence: 12.8] [Reference Citation Analysis]
98 Soltani M, Davis BR, Ford H, Nelson JAD, Bundy BC. Reengineering cell-free protein synthesis as a biosensor: Biosensing with transcription, translation, and protein-folding. Biochemical Engineering Journal 2018;138:165-71. [DOI: 10.1016/j.bej.2018.06.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
99 Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018;122:263-83. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Cited by in Crossref: 56] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]
100 Nezami A, Dehghani S, Nosrati R, Eskandari N, Taghdisi SM, Karimi G. Nanomaterial-based biosensors and immunosensors for quantitative determination of cardiac troponins. Journal of Pharmaceutical and Biomedical Analysis 2018;159:425-36. [DOI: 10.1016/j.jpba.2018.07.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
101 Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. Lab Chip 2017;17:1884-912. [PMID: 28485417 DOI: 10.1039/c7lc00026j] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 14.0] [Reference Citation Analysis]
102 Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F, Behravan J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron 2018;117:319-31. [PMID: 29933223 DOI: 10.1016/j.bios.2018.06.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
103 Farkas E, Szekacs A, Kovacs B, Olah M, Horvath R, Szekacs I. Label-free optical biosensor for real-time monitoring the cytotoxicity of xenobiotics: A proof of principle study on glyphosate. Journal of Hazardous Materials 2018;351:80-9. [DOI: 10.1016/j.jhazmat.2018.02.045] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
104 Alves MF, Corrêa RAMS, da Cruz FS, Franco DL, Ferreira LF. Electrochemical enzymatic fenitrothion sensor based on a tyrosinase/poly(2-hydroxybenzamide)-modified graphite electrode. Anal Biochem 2018;553:15-23. [PMID: 29777681 DOI: 10.1016/j.ab.2018.05.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
105 Lee HW, Kang DH, Cho JH, Lee S, Jun DH, Park JH. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors. ACS Appl Mater Interfaces 2018;10:17639-45. [PMID: 29767497 DOI: 10.1021/acsami.8b03432] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
106 Habimana JDD, Ji J, Sun X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters 2018;51:2933-66. [DOI: 10.1080/00032719.2018.1458104] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
107 Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, de la Guardia M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron 2018;113:58-71. [PMID: 29729560 DOI: 10.1016/j.bios.2018.04.048] [Cited by in Crossref: 48] [Cited by in F6Publishing: 60] [Article Influence: 12.0] [Reference Citation Analysis]
108 Shafiee A, Ghadiri E, Kassis J, Pourhabibi Zarandi N, Atala A. Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. Curr Stem Cell Rep 2018;4:105-15. [DOI: 10.1007/s40778-018-0123-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
109 Medlock J, Das AAK, Madden LA, Allsup DJ, Paunov VN. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment. Chem Soc Rev 2017;46:5110-27. [PMID: 28660268 DOI: 10.1039/c7cs00179g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
110 Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens Bioelectron 2018;110:23-37. [PMID: 29579646 DOI: 10.1016/j.bios.2018.03.037] [Cited by in Crossref: 84] [Cited by in F6Publishing: 93] [Article Influence: 21.0] [Reference Citation Analysis]
111 Xu J, Guo J, Maina SW, Yang Y, Hu Y, Li X, Qiu J, Xin Z. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification. Anal Biochem 2018;549:136-42. [PMID: 29550346 DOI: 10.1016/j.ab.2018.03.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
112 Kant K, Shahbazi MA, Dave VP, Ngo TA, Chidambara VA, Than LQ, Bang DD, Wolff A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol Adv 2018;36:1003-24. [PMID: 29534915 DOI: 10.1016/j.biotechadv.2018.03.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 18.3] [Reference Citation Analysis]
113 Benoudjit A, Bader MM, Wan Salim WWA. Study of electropolymerized PEDOT:PSS transducers for application as electrochemical sensors in aqueous media. Sensing and Bio-Sensing Research 2018;17:18-24. [DOI: 10.1016/j.sbsr.2018.01.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
114 Silva Junior AG, Oliveira MD, Oliveira IS, Lima-neto RG, Sá SR, Franco OL, Andrade CA. A simple nanostructured impedimetric biosensor based on clavanin a peptide for bacterial detection. Sensors and Actuators B: Chemical 2018;255:3267-74. [DOI: 10.1016/j.snb.2017.09.153] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
115 Kolahchi N, Braiek M, Ebrahimipour G, Ranaei-siadat SO, Lagarde F, Jaffrezic-renault N. Direct detection of phenol using a new bacterial strain-based conductometric biosensor. Journal of Environmental Chemical Engineering 2018;6:478-84. [DOI: 10.1016/j.jece.2017.12.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
116 Omar NAS, Fen YW. Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein. SR 2018;38:106-16. [DOI: 10.1108/sr-07-2017-0130] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
117 Botewad S, Pahurkar V, Muley G. Fabrication and evaluation of evanescent wave absorption based polyaniline-cladding modified fiber optic urea biosensor. Optical Fiber Technology 2018;40:8-12. [DOI: 10.1016/j.yofte.2017.11.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
118 Elmekawy A, Hegab H, Pant D, Saint C. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J Appl Microbiol 2018;124:302-13. [DOI: 10.1111/jam.13631] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 11.8] [Reference Citation Analysis]
119 Nosrati R, Golichenari B, Nezami A, Taghdisi SM, Karimi B, Ramezani M, Abnous K, Shaegh SAM. Helicobacter pylori point-of-care diagnosis: Nano-scale biosensors and microfluidic systems. TrAC Trends in Analytical Chemistry 2017;97:428-44. [DOI: 10.1016/j.trac.2017.10.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
120 Bunney J, Williamson S, Atkin D, Jeanneret M, Cozzolino D, Chapman J, Power A, Chandra S. The Use of Electrochemical Biosensors in Food Analysis. Curr Res Nutr Food Sci 2017;5:183-95. [DOI: 10.12944/crnfsj.5.3.02] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
121 Avelino KY, Silva RR, da Silva Junior AG, Oliveira MD, Andrade CA. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. Journal of King Saud University - Science 2017;29:413-23. [DOI: 10.1016/j.jksus.2017.08.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
122 Evtugyn GA, Porfireva AV, Stoikov II. Electrochemical DNA sensors based on spatially distributed redox mediators: challenges and promises. Pure and Applied Chemistry 2017;89:1471-90. [DOI: 10.1515/pac-2016-1124] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
123 Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK. DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods. Appl Microbiol Biotechnol 2017;101:8077-88. [PMID: 28942548 DOI: 10.1007/s00253-017-8493-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
124 Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017;117:12942-3038. [DOI: 10.1021/acs.chemrev.7b00088] [Cited by in Crossref: 160] [Cited by in F6Publishing: 170] [Article Influence: 32.0] [Reference Citation Analysis]
125 Khan GR, Khan RA. Gold-Gilded Zinc Oxide Nanodiamonds: Plasmonic and Morphological Effects. Int J Nanosci 2017;16:1750004. [DOI: 10.1142/s0219581x17500041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
126 Chen S, Shamsi MH. Biosensors-on-chip: a topical review. J Micromech Microeng 2017;27:083001. [DOI: 10.1088/1361-6439/aa7117] [Cited by in Crossref: 45] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
127 Liu A, Shen L, Zeng Z, Sun M, Liu Y, Liu S, Li C, Wang X. A Minireview of the Methods for Listeria monocytogenes Detection. Food Anal Methods 2018;11:215-23. [DOI: 10.1007/s12161-017-0991-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
128 Kaisti M. Detection principles of biological and chemical FET sensors. Biosens Bioelectron 2017;98:437-48. [PMID: 28711826 DOI: 10.1016/j.bios.2017.07.010] [Cited by in Crossref: 237] [Cited by in F6Publishing: 233] [Article Influence: 47.4] [Reference Citation Analysis]
129 Yoon J, Lee T, Bapurao G. B, Jo J, Oh B, Choi J. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosensors and Bioelectronics 2017;93:14-20. [DOI: 10.1016/j.bios.2016.11.064] [Cited by in Crossref: 81] [Cited by in F6Publishing: 75] [Article Influence: 16.2] [Reference Citation Analysis]
130 Badie Bostan H, Danesh NM, Karimi G, Ramezani M, Mousavi Shaegh SA, Youssefi K, Charbgoo F, Abnous K, Taghdisi SM. Ultrasensitive detection of ochratoxin A using aptasensors. Biosens Bioelectron 2017;98:168-79. [PMID: 28672192 DOI: 10.1016/j.bios.2017.06.055] [Cited by in Crossref: 65] [Cited by in F6Publishing: 80] [Article Influence: 13.0] [Reference Citation Analysis]
131 Jung IY, Kim JS, Choi BR, Lee K, Lee H. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes. Adv Healthc Mater 2017;6. [PMID: 28371450 DOI: 10.1002/adhm.201601475] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 15.8] [Reference Citation Analysis]
132 [DOI: 10.1109/iwasi.2017.7974261] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
133 Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosensors and Bioelectronics 2017;90:363-77. [DOI: 10.1016/j.bios.2016.12.005] [Cited by in Crossref: 124] [Cited by in F6Publishing: 141] [Article Influence: 24.8] [Reference Citation Analysis]
134 Chhasatia R, Sweetman MJ, Harding FJ, Waibel M, Kay T, Thomas H, Loudovaris T, Voelcker NH. Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor. Biosens Bioelectron 2017;91:515-22. [PMID: 28082240 DOI: 10.1016/j.bios.2017.01.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
135 Steentjes T, Sarkar S, Jonkheijm P, Lemay SG, Huskens J. Electron Transfer Mediated by Surface-Tethered Redox Groups in Nanofluidic Devices. Small 2017;13. [PMID: 27982518 DOI: 10.1002/smll.201603268] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
136 Du Y, Dong S. Nucleic Acid Biosensors: Recent Advances and Perspectives. Anal Chem 2017;89:189-215. [PMID: 28105831 DOI: 10.1021/acs.analchem.6b04190] [Cited by in Crossref: 202] [Cited by in F6Publishing: 214] [Article Influence: 33.7] [Reference Citation Analysis]
137 Guryanov I, Fiorucci S, Tennikova T. Receptor-ligand interactions: Advanced biomedical applications. Mater Sci Eng C Mater Biol Appl 2016;68:890-903. [PMID: 27524092 DOI: 10.1016/j.msec.2016.07.072] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
138 Štěpánková Š, Vorčáková K. Cholinesterase-based biosensors. Journal of Enzyme Inhibition and Medicinal Chemistry 2016;31:180-93. [DOI: 10.1080/14756366.2016.1204609] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
139 Uria N, Moral-vico J, Abramova N, Bratov A, Muñoz FX. Fast determination of viable bacterial cells in milk samples using impedimetric sensor and a novel calibration method. Electrochimica Acta 2016;198:249-58. [DOI: 10.1016/j.electacta.2016.03.060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
140 Kwak D, Chae H, Lee M, Ha J, Goyal G, Kim MJ, Kim K, Chi S. Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore. Angew Chem Int Ed 2016;55:5713-7. [DOI: 10.1002/anie.201511601] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
141 Kwak D, Chae H, Lee M, Ha J, Goyal G, Kim MJ, Kim K, Chi S. Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore. Angew Chem 2016;128:5807-11. [DOI: 10.1002/ange.201511601] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
142 Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Poopalan P, Liu W, Ravichandran M, Balakrishnan S, Ruslinda A. A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosensors and Bioelectronics 2016;78:14-22. [DOI: 10.1016/j.bios.2015.10.083] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
143 Ribaut C, Voisin V, Malachovská V, Dubois V, Mégret P, Wattiez R, Caucheteur C. Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosensors and Bioelectronics 2016;77:315-22. [DOI: 10.1016/j.bios.2015.09.019] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 12.2] [Reference Citation Analysis]
144 Leonhardt H, Gerhardt M, Höppner N, Krüger K, Tarantola M, Beta C. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics. Phys Rev E 2016;93:012414. [PMID: 26871108 DOI: 10.1103/PhysRevE.93.012414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
145 Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016;6:104675-92. [DOI: 10.1039/c6ra22047a] [Cited by in Crossref: 195] [Cited by in F6Publishing: 186] [Article Influence: 32.5] [Reference Citation Analysis]
146 Jiang Y, Zou S, Cao X. Rapid and ultra-sensitive detection of foodborne pathogens by using miniaturized microfluidic devices: a review. Anal Methods 2016;8:6668-81. [DOI: 10.1039/c6ay01512c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
147 Miao Y, Lv J, Li Y, Yan G. Construction of biomolecular sensors based on quantum dots. RSC Adv 2016;6:109009-22. [DOI: 10.1039/c6ra20499f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
148 Vorčáková K, Štěpánková Š, Sedlák M, Vytřas K. Electrochemical Sensors for the Estimation of the Inhibitory Effect of Phenylcarbamates to Cholinesterase. Chemosensors 2015;3:274-83. [DOI: 10.3390/chemosensors3040274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
149 Rezaei B, Ghani M, Shoushtari AM, Rabiee M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosens Bioelectron 2016;78:513-23. [PMID: 26657595 DOI: 10.1016/j.bios.2015.11.083] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
150 Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, Haarindraprasad R, Ruslinda AR. Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens Bioelectron 2016;84:44-52. [PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
151 Su W, Ding X. Methods of Endotoxin Detection. J Lab Autom 2015;20:354-64. [DOI: 10.1177/2211068215572136] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
152 Josypčuk O, Barek J, Josypčuk B. Construction and Application of Flow Enzymatic Biosensor Based of Silver Solid Amalgam Electrode for Determination of Sarcosine. Electroanalysis 2015;27:2559-66. [DOI: 10.1002/elan.201500246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
153 Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 2015;44:5320-40. [PMID: 25962356 DOI: 10.1039/c4cs00369a] [Cited by in Crossref: 202] [Cited by in F6Publishing: 183] [Article Influence: 28.9] [Reference Citation Analysis]
154 Pahurkar V, Tamgadge Y, Gambhire A, Muley G. Glucose oxidase immobilized PANI cladding modified fiber optic intrinsic biosensor for detection of glucose. Sensors and Actuators B: Chemical 2015;210:362-8. [DOI: 10.1016/j.snb.2014.12.125] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
155 Devadhasan JP, Yoo IS, Kim S. Overview of CMOS image sensor use in molecular diagnostics. Current Applied Physics 2015;15:402-11. [DOI: 10.1016/j.cap.2015.01.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
156 Pahurkar V, Tamgadge Y, Gambhire A, Muley G. Evanescent wave absorption based polyaniline cladding modified fiber optic intrinsic biosensor for glucose sensing application. Measurement 2015;61:9-15. [DOI: 10.1016/j.measurement.2014.10.029] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
157 Tertiş M, Hosu O, Fritea L, Farcau C, Cernat A, Săndulescu R, Cristea C. A Novel Label-Free Immunosensor Based on Activated Graphene Oxide for Acetaminophen Detection. Electroanalysis 2015;27:638-47. [DOI: 10.1002/elan.201400583] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
158 Stipić F, Pletikapić G, Jakšić Ž, Frkanec L, Zgrablić G, Burić P, Lyons DM. Application of Functionalized Lanthanide-Based Nanoparticles for the Detection of Okadaic Acid-Specific Immunoglobulin G. J Phys Chem B 2015;119:1259-64. [DOI: 10.1021/jp506382w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
159 Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015;132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Cited by in Crossref: 119] [Cited by in F6Publishing: 105] [Article Influence: 17.0] [Reference Citation Analysis]
160 Afreen S, Muthoosamy K, Manickam S, Hashim U. Functionalized fullerene (C 60 ) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosensors and Bioelectronics 2015;63:354-64. [DOI: 10.1016/j.bios.2014.07.044] [Cited by in Crossref: 106] [Cited by in F6Publishing: 95] [Article Influence: 15.1] [Reference Citation Analysis]
161 Buron CC, Quinart M, Vrlinic T, Yunus S, Glinel K, Jonas AM, Lakard B. Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors. Electrochimica Acta 2014;148:53-61. [DOI: 10.1016/j.electacta.2014.10.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
162 Balakrishnan SR, Hashim U, Letchumanan G, Kashif M, Ruslinda A, Liu W, Veeradasan P, Haarindra Prasad R, Foo K, Poopalan P. Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensors and Actuators A: Physical 2014;220:101-11. [DOI: 10.1016/j.sna.2014.09.027] [Cited by in Crossref: 55] [Cited by in F6Publishing: 36] [Article Influence: 6.9] [Reference Citation Analysis]
163 Zhang C, Xu S, Zhang X, Huang D, Li R, Zhao S, Wang B. Electrochemical detection of specific DNA sequences related to bladder cancer on CdTe quantum dots modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2014;735:115-22. [DOI: 10.1016/j.jelechem.2014.09.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]