BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang L, Meng Y, Chen Q, Deng J, Zhang Y, Li H, Yao S. Simultaneous electrochemical determination of dihydroxybenzene isomers based on the hydrophilic carbon nanoparticles and ferrocene-derivative mediator dual sensitized graphene composite. Electrochimica Acta 2013;92:216-25. [DOI: 10.1016/j.electacta.2013.01.003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Abu Nayem SM, Shaheen Shah S, Sultana N, Abdul Aziz M, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 – Nanomaterials Excluding Carbon Nanotubes and Graphene. Chem Rec 2021;21:1073-97. [DOI: 10.1002/tcr.202100044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
2 Abu Nayem SM, Shaheen Shah S, Sultana N, Aziz MA, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 – Carbon Nanotubes, Graphene, and their Derivatives. Chem Rec 2021;21:1039-72. [DOI: 10.1002/tcr.202100043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
3 Wei L, Huang X, Zhang X, Yang X, Yang J, Yan F, Ya Y. High-performance electrochemical sensing platform based on sodium alginate-derived 3D hierarchically porous carbon for simultaneous determination of dihydroxybenzene isomers. Anal Methods 2021;13:1110-20. [PMID: 33587733 DOI: 10.1039/d0ay02240c] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
4 Karthika A, Ramasamy Raja V, Karuppasamy P, Suganthi A, Rajarajan M. A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode. Arabian Journal of Chemistry 2020;13:4065-81. [DOI: 10.1016/j.arabjc.2019.06.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
5 Song K, Li R, Li K, Yu H. Simultaneous determination of dihydroxybenzene isomers using a three-dimensional over-oxidized polypyrrole–reduced graphene oxide composite film electrode prepared by an electrochemical method. New J Chem 2020;44:20294-302. [DOI: 10.1039/d0nj01613f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Asadian E, Ghalkhani M, Shahrokhian S. Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical 2019;293:183-209. [DOI: 10.1016/j.snb.2019.04.075] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 33.3] [Reference Citation Analysis]
7 Anil Kumar A, Kumara Swamy B, Shobha Rani T, Ganesh P, Paul Raj Y. Voltammetric determination of catechol and hydroquinone at poly(murexide) modified glassy carbon electrode. Materials Science and Engineering: C 2019;98:746-52. [DOI: 10.1016/j.msec.2018.12.055] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
8 Hammani H, Laghrib F, Lahrich S, Farahi A, Bakasse M, Aboulkas A, El Mhammedi MA. Effect of activated carbon in distinguishing the electrochemical activity of hydroquinone and catechol at carbon paste electrode. Ionics 2019;25:2285-95. [DOI: 10.1007/s11581-018-2648-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
9 Karim-nezhad G, Moghaddam MH, Khorablou Z, Dorraji PS. L- Cysteine Based Polymer Matrix Decorated with Au-Nanoparticles: As a Sensing Platform for Simultaneous Determination of Hydroquinone and Catechol. J Electrochem Soc 2017;164:B193-9. [DOI: 10.1149/2.0891706jes] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
10 Rabti A, Raouafi N, Merkoçi A. Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon 2016;108:481-514. [DOI: 10.1016/j.carbon.2016.07.043] [Cited by in Crossref: 87] [Cited by in F6Publishing: 69] [Article Influence: 14.5] [Reference Citation Analysis]
11 Karim-nezhad G, Khorablou Z, Dorraji PS. Modification of Glassy Carbon Electrode with a Bilayer of Multiwalled Carbon Nanotube/Poly (l-arginine) in the Presence of Surfactant: Application to Discrimination and Simultaneous Electrochemical Determination of Dihydroxybenzene Isomers. J Electrochem Soc 2016;163:B358-65. [DOI: 10.1149/2.1051607jes] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
12 Huang J, Zhang X, Zhou L, You T. Simultaneous electrochemical determination of dihydroxybenzene isomers using electrospun nitrogen-doped carbon nanofiber film electrode. Sensors and Actuators B: Chemical 2016;224:568-76. [DOI: 10.1016/j.snb.2015.10.102] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
13 Majidi MR, Pournaghi-azar MH, Fadakar Bajeh Baj R, Naseri A. Fabrication of ferrocene functionalised ionic liquid/carbon nanotube nanocomposite modified carbon-ceramic electrode: application to the determination of hydrazine. International Journal of Environmental Analytical Chemistry 2015;96:50-67. [DOI: 10.1080/03067319.2015.1114106] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
14 Lavanya N, Sekar C. Highly sensitive electrochemical sensor for simultaneous determination of dihydroxybenzene isomers based on Co doped SnO 2 nanoparticles. RSC Adv 2016;6:68211-9. [DOI: 10.1039/c6ra06056k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
15 Szot K, Opallo M. (Bio)electroanalytical Applications of Carbon Nanoparticles. Electroanalysis 2016;28:46-57. [DOI: 10.1002/elan.201500478] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
16 Ravishankar TN, Suresh Kumar K, Teixeira SR, Fernandez C, Ramakrishnappa T. Ag Doped Titanium Dioxide Nanocomposite-modified Glassy Carbon Electrode as Electrochemical Interface for Catechol Sensing. Electroanalysis 2016;28:452-61. [DOI: 10.1002/elan.201500238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
17 Dorraji PS, Jalali F. A Nanocomposite of Poly(melamine) and Electrochemically Reduced Graphene Oxide Decorated with Cu Nanoparticles: Application to Simultaneous Determination of Hydroquinone and Catechol. J Electrochem Soc 2015;162:B237-44. [DOI: 10.1149/2.0951509jes] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
18 Feng X, Gan N, Zhang H, Yan Q, Li T, Cao Y, Hu F, Yu H, Jiang Q. A novel strategy for multiplexed immunoassay of tumor markers based on electrochemiluminescence coupled with cyclic voltammetry using graphene-polymer nanotags. Electrochimica Acta 2015;170:292-9. [DOI: 10.1016/j.electacta.2015.04.176] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
19 Huang YH, Chen JH, Sun X, Su ZB, Xing HT, Hu SR, Weng W, Guo HX, Wu WB, He YS. One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors and Actuators B: Chemical 2015;212:165-73. [DOI: 10.1016/j.snb.2015.02.013] [Cited by in Crossref: 103] [Cited by in F6Publishing: 104] [Article Influence: 14.7] [Reference Citation Analysis]
20 Wang D, Li T, Gan N, Zhang H, Long N, Hu F, Cao Y, Jiang Q, Jiang S. Electrochemical coding for multiplexed immunoassays of biomarkers based on bio-based polymer-nanotags. Electrochimica Acta 2015;163:238-45. [DOI: 10.1016/j.electacta.2015.02.145] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
21 Zhang Y, Sun R, Luo B, Wang L. Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochimica Acta 2015;156:228-34. [DOI: 10.1016/j.electacta.2014.12.156] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 10.1] [Reference Citation Analysis]
22 Palanisamy S, Karuppiah C, Chen S, Muthupandi K, Emmanuel R, Prakash P, Elshikh MS, Ajmal ali M, Al-hemaid FMA. Selective and Simultaneous Determination of Dihydroxybenzene Isomers Based on Green Synthesized Gold Nanoparticles Decorated Reduced Graphene Oxide. Electroanalysis 2015;27:1144-51. [DOI: 10.1002/elan.201400657] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
23 Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia L. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B: Chemical 2015;206:111-8. [DOI: 10.1016/j.snb.2014.08.084] [Cited by in Crossref: 96] [Cited by in F6Publishing: 90] [Article Influence: 13.7] [Reference Citation Analysis]
24 Huang YH, Chen JH, Ling LJ, Su ZB, Sun X, Hu SR, Weng W, Huang Y, Wu WB, He YS. Simultaneous electrochemical detection of catechol and hydroquinone based on gold nanoparticles@carbon nanocages modified electrode. Analyst 2015;140:7939-47. [DOI: 10.1039/c5an01738f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
25 Huang H, Chen T, Liu X, Ma H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 2014;852:45-54. [PMID: 25441878 DOI: 10.1016/j.aca.2014.09.010] [Cited by in Crossref: 169] [Cited by in F6Publishing: 162] [Article Influence: 21.1] [Reference Citation Analysis]
26 Lai T, Cai W, Dai W, Ye J. Easy processing laser reduced graphene: A green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochimica Acta 2014;138:48-55. [DOI: 10.1016/j.electacta.2014.06.070] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 5.5] [Reference Citation Analysis]
27 Xiong W, Wu M, Zhou L, Liu S. The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode. RSC Adv 2014;4:32092. [DOI: 10.1039/c4ra04256e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
28 Kaur B, Srivastava R. Selective, Nanomolar Electrochemical Determination of Environmental Contaminants Dihydroxybenzene Isomers Found in Water Bodies Using Nanocrystalline Zeolite Modified Carbon Paste Electrodes. Electroanalysis 2014;26:1739-50. [DOI: 10.1002/elan.201400171] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
29 Zhou X, He Z, Lian Q, Li Z, Jiang H, Lu X. Simultaneous determination of dihydroxybenzene isomers based on graphene-graphene oxide nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical 2014;193:198-204. [DOI: 10.1016/j.snb.2013.11.085] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
30 Guo H, Peng S, Xu J, Zhao Y, Kang X. Highly stable pyridinic nitrogen doped graphene modified electrode in simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical 2014;193:623-9. [DOI: 10.1016/j.snb.2013.12.018] [Cited by in Crossref: 81] [Cited by in F6Publishing: 79] [Article Influence: 10.1] [Reference Citation Analysis]
31 Liu Y, Wang W, Wei H, Li J, Lu X, Liu X. Simultaneous determination of dihydroxybenzene isomers based on thionine functionalized multiwall carbon nanotubes modified electrode. J Appl Electrochem 2014;44:667-74. [DOI: 10.1007/s10800-014-0674-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
32 Juanjuan Z, Ruiyi L, Zaijun L, Junkang L, Zhiguo G, Guangli W. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale 2014;6:5458-66. [DOI: 10.1039/c4nr00005f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 9.1] [Reference Citation Analysis]
33 Vilian ATE, Rajkumar M, Chen S, Hu C, Piraman S. A promising photoelectrochemical sensor based on a ZnO particle decorated N-doped reduced graphene oxide modified electrode for simultaneous determination of catechol and hydroquinone. RSC Adv 2014;4:48522-34. [DOI: 10.1039/c4ra09260k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
34 Guo Z, Lu Y, Li J, Xu X, Huang G, Wang Z. Simultaneous determination of hydroquinone and catechol using an electrode modified by a composite of graphene/lanthanum hydroxide nanowires. Anal Methods 2014;6:8314-20. [DOI: 10.1039/c4ay01385a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
35 Huang K, Wang L, Liu Y, Gan T, Liu Y, Wang L, Fan Y. Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochimica Acta 2013;107:379-87. [DOI: 10.1016/j.electacta.2013.06.060] [Cited by in Crossref: 110] [Cited by in F6Publishing: 108] [Article Influence: 12.2] [Reference Citation Analysis]
36 Wang L, Liu M, Meng Y, Li H, Zhang Y, Yao S. (4-Ferrocenylethyne) phenylamine on Graphene as the Signal Amplificator to Determinate Dopamine and Acetaminophen Simultaneously. Chin J Chem 2013;31:845-54. [DOI: 10.1002/cjoc.201201229] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]