BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Z, Zhang Y, Zhu R, Wen G, Dong C, Li H. Self-assembled palladium nanoflowers supported on fullerene: Electrochemical catalytic performance for the reduction of 4-nitrophenol. Electrochemistry Communications 2019;104:106484. [DOI: 10.1016/j.elecom.2019.106484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Patel BR, Noroozifar M, Kerman K. Review—Nanocomposite-Based Sensors for Voltammetric Detection of Hazardous Phenolic Pollutants in Water. J Electrochem Soc 2020;167:037568. [DOI: 10.1149/1945-7111/ab71fa] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
2 Lin C, Luo G, Zhou H, Feng A, Zeng L, Li Q. Ni nanoparticles‐loaded ZnO nanowire as an efficient and stable catalyst for reduction of 4‐nitrophenol. EcoMat. [DOI: 10.1002/eom2.12164] [Reference Citation Analysis]
3 Shen T, Chang Z, Liu X, Chen Q, Feng L. Palladium complex composites based on fullerene encapsulated in porous zinc porphyrin polymers. Journal of Macromolecular Science, Part A 2021;58:872-9. [DOI: 10.1080/10601325.2021.1964369] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Su Y, Zheng X, Cheng H, Rao M, Chen K, Xia J, Lin L, Zhu H. Mn-Fe3O4 nanoparticles anchored on the urushiol functionalized 3D-graphene for the electrochemical detection of 4-nitrophenol. Journal of Hazardous Materials 2021;409:124926. [DOI: 10.1016/j.jhazmat.2020.124926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
5 Nehru R, Kumar BS, Chen C, Dong C. Yolk-shell structured molybdenum disulfide nanospheres as highly enhanced electrocatalyst for electrochemical sensing of hazardous 4-nitrophenol in water. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.107663] [Reference Citation Analysis]