BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015;163:975-87. [PMID: 26544942 DOI: 10.1016/j.cell.2015.10.013] [Cited by in Crossref: 191] [Cited by in F6Publishing: 171] [Article Influence: 31.8] [Reference Citation Analysis]
Number Citing Articles
1 MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA, Kline J. Negligible Role for Deletion Mediated by cDC1 in CD8+ T Cell Tolerance. J Immunol 2019;202:2628-35. [PMID: 30902900 DOI: 10.4049/jimmunol.1801621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
2 Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2021. [PMID: 34750841 DOI: 10.1111/imr.13034] [Reference Citation Analysis]
3 Halouani A, Michaux H, Jmii H, Trussart C, Chahbi A, Martens H, Renard C, Aouni M, Hober D, Geenen V, Jaïdane H. Coxsackievirus B4 Transplacental Infection Severely Disturbs Central Tolerogenic Mechanisms in the Fetal Thymus. Microorganisms 2021;9:1537. [PMID: 34361972 DOI: 10.3390/microorganisms9071537] [Reference Citation Analysis]
4 Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018;9:1663. [PMID: 30083154 DOI: 10.3389/fimmu.2018.01663] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
5 Nalawade SA, Ji N, Raphael I, Pratt A 3rd, Kraig E, Forsthuber TG. Aire is not essential for regulating neuroinflammatory disease in mice transgenic for human autoimmune-diseases associated MHC class II genes HLA-DR2b and HLA-DR4. Cell Immunol 2018;331:38-48. [PMID: 29789121 DOI: 10.1016/j.cellimm.2018.05.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
6 Guerder S, Hassel C, Carrier A. Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics 2019;71:223-32. [PMID: 30225612 DOI: 10.1007/s00251-018-1078-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pujol-Borrell R, Colobran Oriol R. Polyendocrine autoimmune syndromes reveal mechanisms of tolerance and autoimmunity. Med Clin (Barc) 2020;154:444-6. [PMID: 31757393 DOI: 10.1016/j.medcli.2019.10.003] [Reference Citation Analysis]
8 Hoover AR, Dozmorov I, MacLeod J, Du Q, de la Morena MT, Forbess J, Guleserian K, Cleaver OB, van Oers NS. MicroRNA-205 Maintains T Cell Development following Stress by Regulating Forkhead Box N1 and Selected Chemokines. J Biol Chem 2016;291:23237-47. [PMID: 27646003 DOI: 10.1074/jbc.M116.744508] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
9 Sood A, Dong M, Melichar HJ. Preparation and Applications of Organotypic Thymic Slice Cultures. J Vis Exp 2016. [PMID: 27585240 DOI: 10.3791/54355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
10 Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019;287:103-20. [PMID: 30565240 DOI: 10.1111/imr.12714] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 19.0] [Reference Citation Analysis]
11 Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016;271:23-37. [PMID: 27088905 DOI: 10.1111/imr.12406] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
12 Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016;271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
13 Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021;94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Reference Citation Analysis]
14 Oliveira EH, Assis AF, Speck-Hernandez CA, Duarte MJ, Passos GA. Aire Gene Influences the Length of the 3' UTR of mRNAs in Medullary Thymic Epithelial Cells. Front Immunol 2020;11:1039. [PMID: 32547551 DOI: 10.3389/fimmu.2020.01039] [Reference Citation Analysis]
15 Morimoto R, Swann J, Nusser A, Trancoso I, Schorpp M, Boehm T. Evolution of thymopoietic microenvironments. Open Biol 2021;11:200383. [PMID: 33622100 DOI: 10.1098/rsob.200383] [Reference Citation Analysis]
16 Yoganathan K, Chen ELY, Singh J, Zúñiga-pflücker JC. T-Cell Development: From T-Lineage Specification to Intrathymic Maturation. In: Passos GA, editor. Thymus Transcriptome and Cell Biology. Cham: Springer International Publishing; 2019. pp. 67-115. [DOI: 10.1007/978-3-030-12040-5_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020;11:6264. [PMID: 33293517 DOI: 10.1038/s41467-020-20070-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Odagiu L, May J, Boulet S, Baldwin TA, Labrecque N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front Endocrinol (Lausanne) 2020;11:624122. [PMID: 33597928 DOI: 10.3389/fendo.2020.624122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022;13:926516. [DOI: 10.3389/fimmu.2022.926516] [Reference Citation Analysis]
20 Kadouri N, Nevo S, Goldfarb Y, Abramson J. Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol 2020;20:239-53. [PMID: 31804611 DOI: 10.1038/s41577-019-0238-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
21 Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat Immunol 2018;19:659-64. [PMID: 29925986 DOI: 10.1038/s41590-018-0128-9] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 10.5] [Reference Citation Analysis]
22 Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021;10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Reference Citation Analysis]
23 Vdovenko D, Eriksson U. Regulatory Role of CD4+ T Cells in Myocarditis. J Immunol Res 2018;2018:4396351. [PMID: 30035131 DOI: 10.1155/2018/4396351] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
24 Geenen V, Trussart C, Michaux H, Halouani A, Jaïdane H, Collée C, Renard C, Daukandt M, Ledent P, Martens H. The presentation of neuroendocrine self-peptides in the thymus: an essential event for individual life and vertebrate survival. Ann N Y Acad Sci 2019;1455:113-25. [PMID: 31008523 DOI: 10.1111/nyas.14089] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
25 Zhou X, Chen X, Han L, Liu H. Mechanisms underlying immune-related adverse events during checkpoint immunotherapy. Clin Sci (Lond) 2022;136:771-85. [PMID: 35621125 DOI: 10.1042/CS20210042] [Reference Citation Analysis]
26 Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. Adv Exp Med Biol 2017;1003:187-221. [PMID: 28667560 DOI: 10.1007/978-3-319-57613-8_10] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 10.4] [Reference Citation Analysis]
27 Colobran R, Giménez-barcons M, Marín-sánchez A, Porta-pardo E, Pujol-borrell R. AIRE genetic variants and predisposition to polygenic autoimmune disease: The case of Graves’ disease and a systematic literature review. Human Immunology 2016;77:643-51. [DOI: 10.1016/j.humimm.2016.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
28 Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci 2018;1412:21-32. [PMID: 29291257 DOI: 10.1111/nyas.13529] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
29 Stadinski BD, Blevins SJ, Spidale NA, Duke BR, Huseby PG, Stern LJ, Huseby ES. A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3+ Treg cell development. Nat Immunol 2019;20:1046-58. [PMID: 31209405 DOI: 10.1038/s41590-019-0414-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
30 Tajima A, Pradhan I, Trucco M, Fan Y. Restoration of Thymus Function with Bioengineered Thymus Organoids. Curr Stem Cell Rep 2016;2:128-39. [PMID: 27529056 DOI: 10.1007/s40778-016-0040-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
31 Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis: Thymic changes in autoimmune myasthenia gravis. Ann N Y Acad Sci 2018;1412:137-45. [DOI: 10.1111/nyas.13519] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
32 Austyn JM, Gordon S. Dendritic Cells in the Immune System—History, Lineages, Tissues, Tolerance, and Immunity. Microbiol Spectr 2016;4. [DOI: 10.1128/microbiolspec.mchd-0046-2016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
33 Dragin N, Le Panse R, Berrih-Aknin S. [Autoimmune disease predisposition: Aire « protects » men]. Med Sci (Paris) 2017;33:169-75. [PMID: 28240208 DOI: 10.1051/medsci/20173302012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
34 Handel AE, Shikama-Dorn N, Zhanybekova S, Maio S, Graedel AN, Zuklys S, Ponting CP, Holländer GA. Comprehensively Profiling the Chromatin Architecture of Tissue Restricted Antigen Expression in Thymic Epithelial Cells Over Development. Front Immunol 2018;9:2120. [PMID: 30283453 DOI: 10.3389/fimmu.2018.02120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
35 Lebel MÈ, Coutelier M, Galipeau M, Kleinman CL, Moon JJ, Melichar HJ. Differential expression of tissue-restricted antigens among mTEC is associated with distinct autoreactive T cell fates. Nat Commun 2020;11:3734. [PMID: 32709894 DOI: 10.1038/s41467-020-17544-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, Gardner JM, Ye CJ, Anderson MS, Parent AV. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 2021;12:1096. [PMID: 33597545 DOI: 10.1038/s41467-021-21346-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020;11:773. [PMID: 32425946 DOI: 10.3389/fimmu.2020.00773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
38 Creusot RJ, Postigo-Fernandez J, Teteloshvili N. Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy? Diabetes 2018;67:1481-94. [PMID: 30030289 DOI: 10.2337/db17-1564] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
39 Apert C, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein Cell 2018;9:322-32. [PMID: 28540653 DOI: 10.1007/s13238-017-0425-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
40 Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022;13:892498. [PMID: 35693793 DOI: 10.3389/fimmu.2022.892498] [Reference Citation Analysis]
41 Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017;8:351. [PMID: 29312143 DOI: 10.3389/fendo.2017.00351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
42 Perry JS, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016;271:141-55. [PMID: 27088912 DOI: 10.1111/imr.12403] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
43 Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2019;10:3099. [PMID: 32082299 DOI: 10.3389/fimmu.2019.03099] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
44 Preti M, Schlott L, Lübbering D, Krzikalla D, Müller AL, Schuran FA, Poch T, Schakat M, Weidemann S, Lohse AW, Weiler-Normann C, Sebode M, Schwinge D, Schramm C, Carambia A, Herkel J. Failure of thymic deletion and instability of autoreactive Tregs drive autoimmunity in immune-privileged liver. JCI Insight 2021;6:141462. [PMID: 33600378 DOI: 10.1172/jci.insight.141462] [Reference Citation Analysis]
45 Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020;19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
46 Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2021. [PMID: 34545959 DOI: 10.1111/imr.13026] [Reference Citation Analysis]
47 Geenen V. [History of the thymus: from an "accident of evolution" to the programming of immunological self-tolerance]. Med Sci (Paris) 2017;33:653-63. [PMID: 28990569 DOI: 10.1051/medsci/20173306024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
48 Hähnlein JS, Nadafi R, Jong TA, Semmelink JF, Remmerswaal EBM, Safy M, Lienden KPV, Maas M, Gerlag DM, Tak PP, Mebius RE, Wähämaa H, Catrina AI, G M van Baarsen L. Human Lymph Node Stromal Cells Have the Machinery to Regulate Peripheral Tolerance during Health and Rheumatoid Arthritis. Int J Mol Sci 2020;21:E5713. [PMID: 32784936 DOI: 10.3390/ijms21165713] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Kim JH, Kim SC. Paraneoplastic Pemphigus: Paraneoplastic Autoimmune Disease of the Skin and Mucosa. Front Immunol 2019;10:1259. [PMID: 31214197 DOI: 10.3389/fimmu.2019.01259] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
50 Rajan A, Mullenix C, Shelat M, Zhao C. The role of immunotherapy for management of advanced thymic epithelial tumors: a narrative review. Mediastinum 2021;5:23. [PMID: 34541456 DOI: 10.21037/med-20-62] [Reference Citation Analysis]
51 Hu QN, Suen AYW, Henao Caviedes LM, Baldwin TA. Nur77 Regulates Nondeletional Mechanisms of Tolerance in T Cells. J Immunol 2017;199:3147-57. [PMID: 28947542 DOI: 10.4049/jimmunol.1701085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
52 Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, Steinmetz LM. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. Elife 2020;9:e60188. [PMID: 33226342 DOI: 10.7554/eLife.60188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
53 Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, Nathan S, Grawe A, Chang J, Ryan W, Ruhl S, Knox SM, Gokcumen O. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Rep 2020;33:108402. [PMID: 33207190 DOI: 10.1016/j.celrep.2020.108402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
54 Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021;43:45-64. [PMID: 33537838 DOI: 10.1007/s00281-021-00842-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
55 Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CDP, Abe Y, Morishita Y, Okamura T, Taguchi A, Kodama T, Takayanagi H. Chd4 choreographs self-antigen expression for central immune tolerance. Nat Immunol 2020;21:892-901. [PMID: 32601470 DOI: 10.1038/s41590-020-0717-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
56 Xie Y, Wang L, Sun H, Wang Y, Yang Z, Zhang G, Yang W. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice. Int J Biol Macromol 2019;133:1107-14. [PMID: 31022488 DOI: 10.1016/j.ijbiomac.2019.04.144] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
57 Monteleone-Cassiano AC, Dernowsek JA, Mascarenhas RS, Assis AF, Pitol D, Santos Moreira NC, Sakamoto-Hojo ET, Issa JPM, Donadi EA, Passos GA. The absence of the autoimmune regulator gene (AIRE) impairs the three-dimensional structure of medullary thymic epithelial cell spheroids. BMC Mol Cell Biol 2022;23:15. [PMID: 35331137 DOI: 10.1186/s12860-022-00414-9] [Reference Citation Analysis]
58 Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019;40:279-91. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
59 Maslovskaja J, Saare M, Liiv I, Rebane A, Peterson P. Extended HSR/CARD domain mediates AIRE binding to DNA. Biochem Biophys Res Commun 2015;468:913-20. [PMID: 26607109 DOI: 10.1016/j.bbrc.2015.11.056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
60 Cowan JE, Baik S, McCarthy NI, Parnell SM, White AJ, Jenkinson WE, Anderson G. Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus. Eur J Immunol 2018;48:844-54. [PMID: 29285761 DOI: 10.1002/eji.201747375] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
61 Oya A, Katsuyama E, Morita M, Sato Y, Kobayashi T, Miyamoto K, Nishiwaki T, Funayama A, Fujita Y, Kobayashi T, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions. J Bone Miner Metab 2018;36:679-90. [PMID: 29273889 DOI: 10.1007/s00774-017-0890-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zhu ML, Bakhru P, Conley B, Nelson JS, Free M, Martin A, Starmer J, Wilson EM, Su MA. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun 2016;7:11350. [PMID: 27072778 DOI: 10.1038/ncomms11350] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 10.2] [Reference Citation Analysis]
63 Berrih-aknin S. Role of the thymus in autoimmune myasthenia gravis. Clin Exp Neuroimmunol 2016;7:226-37. [DOI: 10.1111/cen3.12319] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
64 Breed ER, Lee ST, Hogquist KA. Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Semin Cell Dev Biol 2018;84:2-10. [PMID: 28800929 DOI: 10.1016/j.semcdb.2017.07.045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
65 Nettersheim FS, Braumann S, Kobiyama K, Orecchioni M, Vassallo M, Miller J, Ali A, Roy P, Saigusa R, Wolf D, Ley K, Winkels H. Autoimmune Regulator (AIRE) Deficiency Does Not Affect Atherosclerosis and CD4 T Cell Immune Tolerance to Apolipoprotein B. Front Cardiovasc Med 2022;8:812769. [DOI: 10.3389/fcvm.2021.812769] [Reference Citation Analysis]
66 Klein L, Robey EA, Hsieh C. Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol 2019;19:7-18. [DOI: 10.1038/s41577-018-0083-6] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 18.8] [Reference Citation Analysis]
67 Miragaia RJ, Zhang X, Gomes T, Svensson V, Ilicic T, Henriksson J, Kar G, Lönnberg T. Single-cell RNA-sequencing resolves self-antigen expression during mTEC development. Sci Rep 2018;8:685. [PMID: 29330484 DOI: 10.1038/s41598-017-19100-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
68 Barraza F, Montero R, Wong-Benito V, Valenzuela H, Godoy-Guzmán C, Guzmán F, Köllner B, Wang T, Secombes CJ, Maisey K, Imarai M. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. Biology (Basel) 2020;10:8. [PMID: 33375568 DOI: 10.3390/biology10010008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
69 Apavaloaei A, Brochu S, Dong M, Rouette A, Hardy MP, Villafano G, Murata S, Melichar HJ, Perreault C. PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells. J Immunol 2019;202:966-78. [PMID: 30567730 DOI: 10.4049/jimmunol.1801288] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
70 Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2021;43:15-27. [PMID: 33306154 DOI: 10.1007/s00281-020-00830-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
71 Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021;22:13578. [PMID: 34948375 DOI: 10.3390/ijms222413578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
72 Kondo K, Takada K, Takahama Y. Antigen processing and presentation in the thymus: implications for T cell repertoire selection. Curr Opin Immunol 2017;46:53-7. [PMID: 28477557 DOI: 10.1016/j.coi.2017.03.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
73 Liu Z, Zhang H, Hu Y, Liu D, Li L, Li C, Wang Q, Huo J, Liu H, Xie N, Huang X, Liu Y, Chen CD, Shi Y, Zhang X. Critical role of histone H3 lysine 27 demethylase Kdm6b in the homeostasis and function of medullary thymic epithelial cells. Cell Death Differ 2020;27:2843-55. [PMID: 32346138 DOI: 10.1038/s41418-020-0546-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
74 Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022;13:926625. [DOI: 10.3389/fimmu.2022.926625] [Reference Citation Analysis]
75 Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2020;11:615371. [PMID: 33603744 DOI: 10.3389/fimmu.2020.615371] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
76 Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022;15:eabj9842. [PMID: 35639856 DOI: 10.1126/scisignal.abj9842] [Reference Citation Analysis]
77 Skogberg G, Jackson S, Åstrand A. Mechanisms of tolerance and potential therapeutic interventions in Alopecia Areata. Pharmacol Ther 2017;179:102-10. [PMID: 28546083 DOI: 10.1016/j.pharmthera.2017.05.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
78 Irla M. Thymic Crosstalk: An Overview of the Complex Cellular Interactions That Control the Establishment of T-Cell Tolerance. In: Passos GA, editor. Thymus Transcriptome and Cell Biology. Cham: Springer International Publishing; 2019. pp. 149-67. [DOI: 10.1007/978-3-030-12040-5_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
79 García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020;9:E2226. [PMID: 33023072 DOI: 10.3390/cells9102226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019;287:73-90. [PMID: 30565244 DOI: 10.1111/imr.12713] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
81 Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021;12:668528. [PMID: 34220815 DOI: 10.3389/fimmu.2021.668528] [Reference Citation Analysis]
82 Sagan SA, Winger RC, Cruz-Herranz A, Nelson PA, Hagberg S, Miller CN, Spencer CM, Ho PP, Bennett JL, Levy M, Levin MH, Verkman AS, Steinman L, Green AJ, Anderson MS, Sobel RA, Zamvil SS. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proc Natl Acad Sci U S A 2016;113:14781-6. [PMID: 27940915 DOI: 10.1073/pnas.1617859114] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
83 Kumar P, Saini S, Prabhakar BS. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Semin Cancer Biol 2020;64:29-35. [PMID: 30716481 DOI: 10.1016/j.semcancer.2019.01.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
84 Vollmann EH, Rattay K, Barreiro O, Thiriot A, Fuhlbrigge RA, Vrbanac V, Kim KW, Jung S, Tager AM, von Andrian UH. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat Commun 2021;12:6230. [PMID: 34711828 DOI: 10.1038/s41467-021-26446-x] [Reference Citation Analysis]
85 Iriki H, Takahashi H, Wada N, Nomura H, Mukai M, Kamata A, Ito H, Yamagami J, Matsui T, Kurebayashi Y, Mise-Omata S, Nishimasu H, Nureki O, Yoshimura A, Hori S, Amagai M. Peripheral tolerance by Treg via constraining OX40 signal in autoreactive T cells against desmoglein 3, a target antigen in pemphigus. Proc Natl Acad Sci U S A 2021;118:e2026763118. [PMID: 34848535 DOI: 10.1073/pnas.2026763118] [Reference Citation Analysis]
86 Proekt I, Miller CN, Lionakis MS, Anderson MS. Insights into immune tolerance from AIRE deficiency. Curr Opin Immunol 2017;49:71-8. [PMID: 29065385 DOI: 10.1016/j.coi.2017.10.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
87 Bichele R, Kisand K, Peterson P, Laan M. TNF superfamily members play distinct roles in shaping the thymic stromal microenvironment. Mol Immunol 2016;72:92-102. [PMID: 27011037 DOI: 10.1016/j.molimm.2016.02.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
88 Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C. AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 2021;14:dmm046359. [PMID: 33729987 DOI: 10.1242/dmm.046359] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
89 Ahn SH, Nguyen SL, Kim TH, Jeong J, Arora R, Lydon JP, Petroff MG. Nuclear Progesterone Receptor Expressed by the Cortical Thymic Epithelial Cells Dictates Thymus Involution in Murine Pregnancy. Front Endocrinol 2022;13:846226. [DOI: 10.3389/fendo.2022.846226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022;11:194. [PMID: 35053310 DOI: 10.3390/cells11020194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
91 Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. Adv Sci (Weinh) 2021;8:2100543. [PMID: 34306981 DOI: 10.1002/advs.202100543] [Reference Citation Analysis]
92 Takahama Y, Ohigashi I, Baik S, Anderson G. Generation of diversity in thymic epithelial cells. Nat Rev Immunol 2017;17:295-305. [PMID: 28317923 DOI: 10.1038/nri.2017.12] [Cited by in Crossref: 88] [Cited by in F6Publishing: 85] [Article Influence: 17.6] [Reference Citation Analysis]
93 Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol 2017;38:805-16. [PMID: 28830733 DOI: 10.1016/j.it.2017.07.010] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 19.8] [Reference Citation Analysis]
94 Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol 2017;18:716-24. [PMID: 28632714 DOI: 10.1038/ni.3731] [Cited by in Crossref: 210] [Cited by in F6Publishing: 188] [Article Influence: 42.0] [Reference Citation Analysis]
95 Oliveira EH, Macedo C, Collares CV, Freitas AC, Donate PB, Sakamoto-Hojo ET, Donadi EA, Passos GA. Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells. Front Immunol 2016;7:526. [PMID: 27933063 DOI: 10.3389/fimmu.2016.00526] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
96 Takahashi H, Iriki H, Mukai M, Kamata A, Nomura H, Yamagami J, Amagai M. Autoimmunity and immunological tolerance in autoimmune bullous diseases. Int Immunol 2019;31:431-7. [PMID: 30887049 DOI: 10.1093/intimm/dxz030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
97 Yang SH, Gao CY, Li L, Chang C, Leung PSC, Gershwin ME, Lian ZX. The molecular basis of immune regulation in autoimmunity. Clin Sci (Lond) 2018;132:43-67. [PMID: 29305419 DOI: 10.1042/CS20171154] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
98 Shilov ES. Body’s Own Epitopes among Foreign Ones: T Cells and Autoantigens. Mol Biol 2019;53:748-57. [DOI: 10.1134/s0026893319050133] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
99 Solano ME, Holmes MC, Mittelstadt PR, Chapman KE, Tolosa E. Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016;38:739-63. [DOI: 10.1007/s00281-016-0575-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
100 Wakitani S, Kawabata R, Yasuda M. Insufficiency of CD205-positive cortical thymic epithelial cells in immature Japanese Black cattle with severe thymic abnormalities and poor prognosis. Vet Immunol Immunopathol 2022;245:110379. [PMID: 35038635 DOI: 10.1016/j.vetimm.2021.110379] [Reference Citation Analysis]
101 Lopes N, Vachon H, Marie J, Irla M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 2017;9:835-51. [PMID: 28455312 DOI: 10.15252/emmm.201607176] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
102 Guo C, Leung PS, Zhang W, Ma X, Gershwin ME. The immunobiology and clinical features of type 1 autoimmune polyglandular syndrome (APS-1). Autoimmunity Reviews 2018;17:78-85. [DOI: 10.1016/j.autrev.2017.11.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
103 Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021. [PMID: 34381167 DOI: 10.1038/s41418-021-00850-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Irla M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020;11:623265. [PMID: 33552088 DOI: 10.3389/fimmu.2020.623265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
105 Jansen K, Shikama-Dorn N, Attar M, Maio S, Lopopolo M, Buck D, Holländer GA, Sansom SN. RBFOX splicing factors contribute to a broad but selective recapitulation of peripheral tissue splicing patterns in the thymus. Genome Res 2021;31:2022-34. [PMID: 34649931 DOI: 10.1101/gr.275245.121] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Geenen V, Savino W. History of the Thymus: From a Vestigial Organ to the Programming of Immunological Self-Tolerance. In: Passos GA, editor. Thymus Transcriptome and Cell Biology. Cham: Springer International Publishing; 2019. pp. 1-18. [DOI: 10.1007/978-3-030-12040-5_1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Lopes N, Boucherit N, Santamaria JC, Provin N, Charaix J, Ferrier P, Giraud M, Irla M. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. Elife 2022;11:e69982. [PMID: 35188458 DOI: 10.7554/eLife.69982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
108 Tan J, Taitz J, Sun SM, Langford L, Ni D, Macia L. Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Front Nutr 2022;9:878382. [DOI: 10.3389/fnut.2022.878382] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Saxena V, Li L, Paluskievicz C, Kasinath V, Bean A, Abdi R, Jewell CM, Bromberg JS. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol Rev 2019;292:9-23. [PMID: 31538349 DOI: 10.1111/imr.12799] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
110 Gennery A. Recent advances in understanding RAG deficiencies. F1000Res 2019;8:F1000 Faculty Rev-148. [PMID: 30800289 DOI: 10.12688/f1000research.17056.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
111 Rodrigues PM, Ribeiro AR, Perrod C, Landry JJM, Araújo L, Pereira-Castro I, Benes V, Moreira A, Xavier-Ferreira H, Meireles C, Alves NL. Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice. Blood 2017;130:478-88. [PMID: 28559356 DOI: 10.1182/blood-2016-12-758961] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
112 Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021;12:706244. [PMID: 34539637 DOI: 10.3389/fimmu.2021.706244] [Reference Citation Analysis]
113 Okamoto K, Nakashima T, Shinohara M, Negishi-koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews 2017;97:1295-349. [DOI: 10.1152/physrev.00036.2016] [Cited by in Crossref: 163] [Cited by in F6Publishing: 157] [Article Influence: 32.6] [Reference Citation Analysis]
114 Raposo B, Merky P, Lundqvist C, Yamada H, Urbonaviciute V, Niaudet C, Viljanen J, Kihlberg J, Kyewski B, Ekwall O, Holmdahl R, Bäcklund J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018;9:353. [PMID: 29367624 DOI: 10.1038/s41467-017-02763-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
115 Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021;12:623280. [PMID: 33732245 DOI: 10.3389/fimmu.2021.623280] [Reference Citation Analysis]
116 Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022;13:930963. [DOI: 10.3389/fimmu.2022.930963] [Reference Citation Analysis]
117 Montero-Herradón S, García-Ceca J, Zapata AG. Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Front Immunol 2018;9:1020. [PMID: 29867988 DOI: 10.3389/fimmu.2018.01020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
118 Campbell-Tofte J, Vrahatis A, Josefsen K, Mehlsen J, Winther K. Investigating the aetiology of adverse events following HPV vaccination with systems vaccinology. Cell Mol Life Sci 2019;76:67-87. [PMID: 30324425 DOI: 10.1007/s00018-018-2925-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
119 Xie Y, Zhang Q, Wang L, Wang Y, Cheng Z, Yang Z, Yang W. The Effects of Partially or Completely Substituted Dietary Zinc Sulfate by Lower Levels of Zinc Methionine on Growth Performance, Apparent Total Tract Digestibility, Immune Function, and Visceral Indices in Weaned Piglets. Animals (Basel) 2019;9:E236. [PMID: 31086094 DOI: 10.3390/ani9050236] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
120 Gabrielsen ISM, Helgeland H, Akselsen H, D Aass HC, Sundaram AYM, Snowhite IV, Pugliese A, Flåm ST, Lie BA. Transcriptomes of antigen presenting cells in human thymus. PLoS One 2019;14:e0218858. [PMID: 31261375 DOI: 10.1371/journal.pone.0218858] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
121 Thomas R, Oh J, Wang W, Su DM. Thymic atrophy creates holes in Treg-mediated immuno-regulation via impairment of an antigen-specific clone. Immunology 2021;163:478-92. [PMID: 33786850 DOI: 10.1111/imm.13333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med 2019;9:a031245. [PMID: 29610150 DOI: 10.1101/cshperspect.a031245] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
123 Larouche JD, Trofimov A, Hesnard L, Ehx G, Zhao Q, Vincent K, Durette C, Gendron P, Laverdure JP, Bonneil É, Côté C, Lemieux S, Thibault P, Perreault C. Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Med 2020;12:40. [PMID: 32345368 DOI: 10.1186/s13073-020-00740-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
124 Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018;9:613. [PMID: 29686669 DOI: 10.3389/fimmu.2018.00613] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
125 Albano F, Vecchio E, Renna M, Iaccino E, Mimmi S, Caiazza C, Arcucci A, Avagliano A, Pagliara V, Donato G, Palmieri C, Mallardo M, Quinto I, Fiume G. Insights into Thymus Development and Viral Thymic Infections. Viruses 2019;11:E836. [PMID: 31505755 DOI: 10.3390/v11090836] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
126 Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease-Lessons from Primary Immunodeficiency? Front Immunol 2017;8:328. [PMID: 28377772 DOI: 10.3389/fimmu.2017.00328] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
127 Xue Z, Ansari AR, Zhao X, Zang K, Liang Y, Cui L, Hu Y, Cheng R, Zhang X, Zhong J, Liu H. RNA-Seq-Based Gene Expression Pattern and Morphological Alterations in Chick Thymus during Postnatal Development. Int J Genomics 2019;2019:6905194. [PMID: 31179312 DOI: 10.1155/2019/6905194] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
128 Yin C, Pei XY, Shen H, Gao YN, Sun XY, Wang W, Ge Q, Zhang Y. Thymic homing of activated CD4+ T cells induces degeneration of the thymic epithelium through excessive RANK signaling. Sci Rep 2017;7:2421. [PMID: 28546567 DOI: 10.1038/s41598-017-02653-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
129 Haunerdinger V, Moccia MD, Opitz L, Vavassori S, Dave H, Hauri-Hohl MM. Novel Combination of Surface Markers for the Reliable and Comprehensive Identification of Human Thymic Epithelial Cells by Flow Cytometry: Quantitation and Transcriptional Characterization of Thymic Stroma in a Pediatric Cohort. Front Immunol 2021;12:740047. [PMID: 34659232 DOI: 10.3389/fimmu.2021.740047] [Reference Citation Analysis]
130 Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021;39:54-63. [PMID: 33438173 DOI: 10.1007/s00774-020-01178-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife 2020;9:e56221. [PMID: 32840480 DOI: 10.7554/eLife.56221] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
132 Harakal J, Qiao H, Wheeler K, Rival C, Paul AGA, Hardy DM, Cheng CY, Goldberg E, Tung KSK. Exposed and Sequestered Antigens in Testes and Their Protection by Regulatory T Cell-Dependent Systemic Tolerance. Front Immunol 2022;13:809247. [DOI: 10.3389/fimmu.2022.809247] [Reference Citation Analysis]
133 Duarte MJ, Mascarenhas RS, Assis AF, Tanaka PP, Speck-Hernandez CA, Passos GA. Autoimmune regulator act in synergism with thymocyte adhesion in the control of lncRNAs in medullary thymic epithelial cells. Mol Immunol 2021;140:127-35. [PMID: 34700158 DOI: 10.1016/j.molimm.2021.10.005] [Reference Citation Analysis]
134 Deya-Martinez A, Flinn AM, Gennery AR. Neonatal thymectomy in children-accelerating the immunologic clock? J Allergy Clin Immunol 2020;146:236-43. [PMID: 32169378 DOI: 10.1016/j.jaci.2020.02.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
135 Geenen V. The thymus and the science of self. Semin Immunopathol 2021;43:5-14. [PMID: 33415360 DOI: 10.1007/s00281-020-00831-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
136 Liu D, Kousa AI, O'Neill KE, Rouse P, Popis M, Farley AM, Tomlinson SR, Ulyanchenko S, Guillemot F, Seymour PA, Jørgensen MC, Serup P, Koch U, Radtke F, Blackburn CC. Canonical Notch signaling controls the early thymic epithelial progenitor cell state and emergence of the medullary epithelial lineage in fetal thymus development. Development 2020;147:dev178582. [PMID: 32467237 DOI: 10.1242/dev.178582] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
137 Passos GA, Speck-Hernandez CA, Assis AF, Mendes-da-Cruz DA. Update on Aire and thymic negative selection. Immunology 2018;153:10-20. [PMID: 28871661 DOI: 10.1111/imm.12831] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
138 Honma M, Ikebuchi Y, Suzuki H. RANKL as a key figure in bridging between the bone and immune system: Its physiological functions and potential as a pharmacological target. Pharmacology & Therapeutics 2021;218:107682. [DOI: 10.1016/j.pharmthera.2020.107682] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
139 Goldfarb Y, Kadouri N, Levi B, Sela A, Herzig Y, Cohen RN, Hollenberg AN, Abramson J. HDAC3 Is a Master Regulator of mTEC Development. Cell Rep 2016;15:651-65. [PMID: 27068467 DOI: 10.1016/j.celrep.2016.03.048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
140 Dembic Z. On integrity in immunity during ontogeny or how thymic regulatory T cells work. Scand J Immunol 2019;90:e12806. [PMID: 31276223 DOI: 10.1111/sji.12806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
141 Cowan JE, McCarthy NI, Anderson G. CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3(+) T Cells. Cell Rep 2016;14:1041-8. [PMID: 26832402 DOI: 10.1016/j.celrep.2016.01.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
142 Wang L, Winnewisser J, Federle C, Jessberger G, Nave KA, Werner HB, Kyewski B, Klein L, Hinterberger M. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis. Front Immunol 2017;8:1511. [PMID: 29170668 DOI: 10.3389/fimmu.2017.01511] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
143 Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022;13:896472. [DOI: 10.3389/fimmu.2022.896472] [Reference Citation Analysis]
144 Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. J Immunol 2019;203:2031-41. [PMID: 31591259 DOI: 10.4049/jimmunol.1900662] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
145 Bakhru P, Su MA. Estrogen turns down "the AIRE". J Clin Invest 2016;126:1239-41. [PMID: 26999606 DOI: 10.1172/JCI86800] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
146 McLachlan SM, Aliesky HA, Banuelos B, Lesage S, Collin R, Rapoport B. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017;188:243-53. [PMID: 28099999 DOI: 10.1111/cei.12928] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
147 Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021;43:65-83. [PMID: 33532929 DOI: 10.1007/s00281-020-00835-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
148 Klein L. Aire Gets Company for Immune Tolerance. Cell 2015;163:794-5. [PMID: 26544932 DOI: 10.1016/j.cell.2015.10.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
149 Yang L, Jin R, Lu D, Ge Q. T cell Tolerance in Early Life. Front Immunol 2020;11:576261. [PMID: 33329542 DOI: 10.3389/fimmu.2020.576261] [Reference Citation Analysis]
150 Sun S, Li JY, Nim HT, Piers A, Ramialison M, Porrello ER, Konstantinov IE, Elefanty AG, Stanley EG. CD90 Marks a Mesenchymal Program in Human Thymic Epithelial Cells In Vitro and In Vivo. Front Immunol 2022;13:846281. [PMID: 35371075 DOI: 10.3389/fimmu.2022.846281] [Reference Citation Analysis]
151 Guha M, Saare M, Maslovskaja J, Kisand K, Liiv I, Haljasorg U, Tasa T, Metspalu A, Milani L, Peterson P. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes. J Biol Chem 2017;292:6542-54. [PMID: 28242760 DOI: 10.1074/jbc.M116.764704] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
152 Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity 2016;44:1102-13. [PMID: 27130899 DOI: 10.1016/j.immuni.2016.02.009] [Cited by in Crossref: 111] [Cited by in F6Publishing: 99] [Article Influence: 18.5] [Reference Citation Analysis]
153 Eshima K, Misawa K, Ohashi C, Noma H, Iwabuchi K. NF-κB-inducing kinase contributes to normal development of cortical thymic epithelial cells: its possible role in shaping a proper T-cell repertoire. Immunology 2020;160:198-208. [PMID: 32145062 DOI: 10.1111/imm.13186] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
154 Mukohira H, Hara T, Abe S, Tani-Ichi S, Sehara-Fujisawa A, Nagasawa T, Tobe K, Ikuta K. Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. Int Immunol 2019;31:729-42. [PMID: 31094421 DOI: 10.1093/intimm/dxz042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
155 Alberti P, Handel AE. The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2021;43:135-57. [PMID: 33108502 DOI: 10.1007/s00281-020-00822-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
156 Hasegawa H, Matsumoto T. Mechanisms of Tolerance Induction by Dendritic Cells In Vivo. Front Immunol 2018;9:350. [PMID: 29535726 DOI: 10.3389/fimmu.2018.00350] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 17.3] [Reference Citation Analysis]
157 Borelli A, Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell Death Differ 2021;28:2305-14. [PMID: 34290396 DOI: 10.1038/s41418-021-00834-8] [Reference Citation Analysis]
158 Speck-Hernandez CA, Assis AF, Felicio RF, Cotrim-Sousa L, Pezzi N, Lopes GS, Bombonato-Prado KF, Giuliatti S, Passos GA. Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes. Front Immunol 2018;9:964. [PMID: 29867946 DOI: 10.3389/fimmu.2018.00964] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
159 Iriki H, Mukai M, Ito H, Kurebayashi Y, Amagai M, Takahashi H. Imiquimod-induced dermatitis impairs thymic tolerance of autoreactive CD4+ T cells to desmoglein 3. J Dermatol Sci 2020;100:166-74. [PMID: 33023784 DOI: 10.1016/j.jdermsci.2020.09.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
160 Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2019;31:119-25. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
161 Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, Ichimura Y, Toyama T, Taniguchi T, Akamata K, Noda S, Yoshizaki A, Tsuruta D, Trojanowska M, Sato S. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med 2017;214:1129-51. [PMID: 28232470 DOI: 10.1084/jem.20160247] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 9.6] [Reference Citation Analysis]
162 Alawam AS, Anderson G, Lucas B. Generation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020;11:858. [PMID: 32457758 DOI: 10.3389/fimmu.2020.00858] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
163 MIyao T, Miyauchi M, Kelly ST, Terooatea TW, Ishikawa T, Oh E, Hirai S, Horie K, Takakura Y, Ohki H, Hayama M, Maruyama Y, Seki T, Ishii H, Yabukami H, Yoshida M, Inoue A, Sakaue-Sawano A, Miyawaki A, Muratani M, Minoda A, Akiyama N, Akiyama T. Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator. Elife 2022;11:e73998. [PMID: 35578835 DOI: 10.7554/eLife.73998] [Reference Citation Analysis]
164 Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019;107:42-9. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
165 Ribeiro C, Alves NL, Ferreirinha P. Medullary thymic epithelial cells: Deciphering the functional diversity beyond promiscuous gene expression. Immunol Lett 2019;215:24-7. [PMID: 30853502 DOI: 10.1016/j.imlet.2019.01.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
166 Lundberg V, Berglund M, Skogberg G, Lindgren S, Lundqvist C, Gudmundsdottir J, Thörn K, Telemo E, Ekwall O. Thymic exosomes promote the final maturation of thymocytes. Sci Rep 2016;6:36479. [PMID: 27824109 DOI: 10.1038/srep36479] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
167 Li Y, Wang C, Liu H, Su J, Lan CQ, Zhong M, Hu X. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. Algal Research 2020;48:101883. [DOI: 10.1016/j.algal.2020.101883] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
168 Yi J, Kawabe T, Sprent J. New insights on T-cell self-tolerance. Current Opinion in Immunology 2020;63:14-20. [DOI: 10.1016/j.coi.2019.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
169 Pezzi N, Assis AF, Cotrim-Sousa LC, Lopes GS, Mosella MS, Lima DS, Bombonato-Prado KF, Passos GA. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Mol Immunol 2016;77:157-73. [PMID: 27505711 DOI: 10.1016/j.molimm.2016.08.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
170 Carter JA, Strömich L, Peacey M, Chapin SR, Velten L, Steinmetz LM, Brors B, Pinto S, Meyer HV. Transcriptomic diversity in human medullary thymic epithelial cells. Nat Commun 2022;13:4296. [PMID: 35918316 DOI: 10.1038/s41467-022-31750-1] [Reference Citation Analysis]
171 Capo V, Castiello MC, Fontana E, Penna S, Bosticardo M, Draghici E, Poliani LP, Sergi Sergi L, Rigoni R, Cassani B, Zanussi M, Carrera P, Uva P, Dobbs K, Sacchetti N, Notarangelo LD, van Til NP, Wagemaker G, Villa A. Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation. J Allergy Clin Immunol 2018;142:928-941.e8. [PMID: 29241731 DOI: 10.1016/j.jaci.2017.11.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
172 Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021;12:706136. [PMID: 34394106 DOI: 10.3389/fimmu.2021.706136] [Reference Citation Analysis]
173 Manjili MH. A Theoretical Basis for the Efficacy of Cancer Immunotherapy and Immunogenic Tumor Dormancy: The Adaptation Model of Immunity. Adv Cancer Res 2018;137:17-36. [PMID: 29405975 DOI: 10.1016/bs.acr.2017.11.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
174 Song Q, Kong X, Martin PJ, Zeng D. Murine Models Provide New Insights Into Pathogenesis of Chronic Graft-Versus-Host Disease in Humans. Front Immunol 2021;12:700857. [PMID: 34539630 DOI: 10.3389/fimmu.2021.700857] [Reference Citation Analysis]
175 St-Pierre C, Morgand E, Benhammadi M, Rouette A, Hardy MP, Gaboury L, Perreault C. Immunoproteasomes Control the Homeostasis of Medullary Thymic Epithelial Cells by Alleviating Proteotoxic Stress. Cell Rep 2017;21:2558-70. [PMID: 29186691 DOI: 10.1016/j.celrep.2017.10.121] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
176 Usharauli D, Kamala T. Concurrent cross-reactivity of microbiota-derived epitopes to both self and pathogens may underlie the “Hygiene hypothesis”. Scand J Immunol 2018;88:e12708. [DOI: 10.1111/sji.12708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
177 Singh NJ. Self-reactivity as the necessary cost of maintaining a diverse memory T-cell repertoire. Pathog Dis 2016;74:ftw092. [PMID: 27620200 DOI: 10.1093/femspd/ftw092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
178 Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021;6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Wang HX, Zhang Q, Zhang J, Luan R, Liang Z, Tan L, Xu Y, Zhang P, Zheng L, Zhao Y, Qiu YR. CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway. FASEB J 2021;35:e21535. [PMID: 33817835 DOI: 10.1096/fj.202100139R] [Reference Citation Analysis]
180 Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018;9:1262. [PMID: 29593265 DOI: 10.1038/s41467-018-03619-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
181 James KD, Jenkinson WE, Anderson G. T-cell egress from the thymus: Should I stay or should I go? J Leukoc Biol 2018;104:275-84. [PMID: 29485734 DOI: 10.1002/JLB.1MR1217-496R] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
182 Mino N, Muro R, Ota A, Nitta S, Lefebvre V, Nitta T, Fujio K, Takayanagi H. The Transcription Factor Sox4 is Required for Thymic Tuft Cell Development. Int Immunol 2021:dxab098. [PMID: 34687536 DOI: 10.1093/intimm/dxab098] [Reference Citation Analysis]
183 Schlüter A, Horstmann M, Diaz-Cano S, Plöhn S, Stähr K, Mattheis S, Oeverhaus M, Lang S, Flögel U, Berchner-Pfannschmidt U, Eckstein A, Banga JP. Genetic immunization with mouse thyrotrophin hormone receptor plasmid breaks self-tolerance for a murine model of autoimmune thyroid disease and Graves' orbitopathy. Clin Exp Immunol 2018;191:255-67. [PMID: 29058307 DOI: 10.1111/cei.13075] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
184 Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4+FOXP3+ T Regulatory Cells. Front Immunol 2018;9:1701. [PMID: 30083162 DOI: 10.3389/fimmu.2018.01701] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
185 Du Q, Huynh LK, Coskun F, Molina E, King MA, Raj P, Khan S, Dozmorov I, Seroogy CM, Wysocki CA, Padron GT, Yates TR, Markert ML, de la Morena MT, van Oers NS. FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans. J Clin Invest 2019;129:4724-38. [PMID: 31566583 DOI: 10.1172/JCI127565] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
186 Madley R, Nauman G, Danzl N, Borsotti C, Khosravi Maharlooei M, Li HW, Chavez E, Creusot RJ, Nakayama M, Roep B, Sykes M. Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. J Transl Autoimmun 2020;3:100061. [PMID: 32875283 DOI: 10.1016/j.jtauto.2020.100061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
187 Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020;11:1850. [PMID: 32973763 DOI: 10.3389/fimmu.2020.01850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
188 Alves NL, Ribeiro AR. Thymus medulla under construction: Time and space oddities. Eur J Immunol 2016;46:829-33. [PMID: 26947141 DOI: 10.1002/eji.201646329] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
189 Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021;42:920-36. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Reference Citation Analysis]
190 Cosway EJ, Lucas B, James KD, Parnell SM, Carvalho-Gaspar M, White AJ, Tumanov AV, Jenkinson WE, Anderson G. Redefining thymus medulla specialization for central tolerance. J Exp Med 2017;214:3183-95. [PMID: 28830910 DOI: 10.1084/jem.20171000] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
191 Hoyne GF, Elliott H, Mutsaers SE, Prêle CM. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol Cell Biol 2017;95:577-83. [DOI: 10.1038/icb.2017.22] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
192 Engelmann R, Biemelt A, Johl A, Kuthning D, Müller-Hilke B. Reduced Numbers of Mature Medullary Thymic Epithelial Cells in SKG Mice. Scand J Immunol 2018;87:28-35. [PMID: 29105157 DOI: 10.1111/sji.12626] [Reference Citation Analysis]
193 Cowan J, Bhandoola A. Progress on thymic function from Maui. Nat Immunol 2016;17:1129-32. [PMID: 27648536 DOI: 10.1038/ni.3555] [Reference Citation Analysis]
194 Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021;302:68-85. [PMID: 34096078 DOI: 10.1111/imr.12985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
195 Wu H, Qin X, Dai H, Zhang Y. Time-course transcriptome analysis of medullary thymic epithelial cells in the early phase of thymic involution. Molecular Immunology 2018;99:87-94. [DOI: 10.1016/j.molimm.2018.04.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
196 Farini A, Sitzia C, Villa C, Cassani B, Tripodi L, Legato M, Belicchi M, Bella P, Lonati C, Gatti S, Cerletti M, Torrente Y. Defective dystrophic thymus determines degenerative changes in skeletal muscle. Nat Commun 2021;12:2099. [PMID: 33833239 DOI: 10.1038/s41467-021-22305-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
197 Mitre TM, Pietropaolo M, Khadra A. The dual role of autoimmune regulator in maintaining normal expression level of tissue-restricted autoantigen in the thymus: A modeling investigation. Math Biosci 2017;287:12-23. [PMID: 27765528 DOI: 10.1016/j.mbs.2016.10.002] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]