BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang S, Rong F, Guo C, Duan F, He L, Wang M, Zhang Z, Kang M, Du M. Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coordination Chemistry Reviews 2021;439:213948. [DOI: 10.1016/j.ccr.2021.213948] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Tian J, Liu X, Zhang S, Chen K, Zhu L, Song Y, Wang M, Zhang Z, Du M. Novel aptasensing strategy for efficiently quantitative analyzing Staphylococcus aureus based on defective copper-based metal–organic framework. Food Chemistry 2023;402:134357. [DOI: 10.1016/j.foodchem.2022.134357] [Reference Citation Analysis]
2 Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. Biosensors (Basel) 2023;13. [PMID: 36671934 DOI: 10.3390/bios13010099] [Reference Citation Analysis]
3 Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. Biosensors (Basel) 2023;13. [PMID: 36671920 DOI: 10.3390/bios13010085] [Reference Citation Analysis]
4 Ahmed I, Mondol MMH, Jung M, Lee GH, Jhung SH. MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews 2023;475:214912. [DOI: 10.1016/j.ccr.2022.214912] [Reference Citation Analysis]
5 Wang J, Cao Q, Cheng XF, Ye W, He JH, Lu JM. Moisture-Insensitive and Highly Selective Detection of NO(2) by Ion-in-Conjugation Covalent Organic Frameworks. ACS Sens 2022;7:3782-9. [PMID: 36384296 DOI: 10.1021/acssensors.2c01631] [Reference Citation Analysis]
6 Dey B, Ahmad W, Sarkhel G, Ho Lee G, Choudhury A. Fabrication of Niobium Metal Organic Frameworks anchored Carbon Nanofiber Hybrid Film for Simultaneous Detection of Xanthine, Hypoxanthine and Uric Acid. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108295] [Reference Citation Analysis]
7 Kalambate P, Thirabowonkitphithan P, Kaewarsa P, Permpoka K, Radwan A, Shakoor R, Kalambate R, Khosropour H, Huang Y, Laiwattanapaisal W. Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Materials Today Chemistry 2022;26:101235. [DOI: 10.1016/j.mtchem.2022.101235] [Reference Citation Analysis]
8 Wei Y, Ren Z, Ran Z, Wang R, Liu CB, Shi C, Liu CL, Wang C, Zhang YH. All-fiber SPR microfluidic chip for GDF11 detection. Biomed Opt Express 2022;13:6659-70. [PMID: 36589582 DOI: 10.1364/BOE.477303] [Reference Citation Analysis]
9 Al Kiey SA, Abdelhamid HN. Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. Journal of Energy Storage 2022;55:105449. [DOI: 10.1016/j.est.2022.105449] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jouyandeh M, Sajadi SM, Seidi F, Habibzadeh S, Munir MT, Abida O, Ahmadi S, Kowalkowska-zedler D, Rabiee N, Rabiee M, Heidari G, Hassanpour M, Zare EN, Saeb MR. Metal nanoparticles-assisted early diagnosis of diseases. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100104] [Reference Citation Analysis]
11 Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134842] [Reference Citation Analysis]
12 Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews 2022;471:214723. [DOI: 10.1016/j.ccr.2022.214723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022;:1-27. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Reference Citation Analysis]
14 Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022;:1-22. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Reference Citation Analysis]
15 Munawar J, Shahzeb Khan M, Zehra Syeda SE, Nawaz S, Ahmed Janjhi F, Ul Haq H, Ullah Rashid E, Jesionowski T, Bilal M. Metal-organic framework-based smart nanoplatforms with multifunctional attributes for biosensing, drug delivery, and cancer theranostics. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.110145] [Reference Citation Analysis]
16 Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coordination Chemistry Reviews 2022;468:214627. [DOI: 10.1016/j.ccr.2022.214627] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
17 Eivazzadeh-keihan R, Saadatidizaji Z, Maleki A, de la Guardia MDL, Mahdavi M, Barzegar S, Ahadian S. Recent Progresses in Development of Biosensors for Thrombin Detection. Biosensors 2022;12:767. [DOI: 10.3390/bios12090767] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Wang L, Lu X, Zhao R, Qu Z, He B. FeMOF-based nanostructured platforms for T-2 toxin detection in beer by a “fence-type” aptasensing principle. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04330-x] [Reference Citation Analysis]
19 Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry Reviews 2022;466:214611. [DOI: 10.1016/j.ccr.2022.214611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2022;:1-17. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lee M, Kim J, Jang M, Park C, Lee J, Lee T. Introduction of Nanomaterials to Biosensors for Exosome Detection: Case Study for Cancer Analysis. Biosensors 2022;12:648. [DOI: 10.3390/bios12080648] [Reference Citation Analysis]
22 Zhao H, Dou L, Ren J, Cui M, Li N, Ji X, Liu X, Zhang C. MOF-derived porous Co3O4 coupled with AuNPs and nucleic acids as electrocatalysis signal probe for sensitive electrochemical aptasensing of adenosine triphosphate. Sensors and Actuators B: Chemical 2022;362:131753. [DOI: 10.1016/j.snb.2022.131753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lou Y, Jia Q, Rong F, Zhang S, Zhang Z, Du M. Universal biosensing platform based on polyMn-MOF nanosheets for efficient analysis of foodborne pathogens from diverse foodstuffs. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.133618] [Reference Citation Analysis]
24 Negm A, Gouda M, Ibrahim HM. Carboxymethyl Cellulose/Zn-Organic Framework Down-Regulates Proliferation and Up-Regulates Apoptosis and DNA Damage in Colon and Lung Cancer Cell Lines. Polymers 2022;14:2015. [DOI: 10.3390/polym14102015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Shepa J, Šišoláková I, Panigaj M, Bilá D, Jarčuška P, Oriňaková R. Electrochemical Biosensors for Soluble Epidermal Growth Factor Receptor Detection. Electrocatalysis. [DOI: 10.1007/s12678-022-00740-8] [Reference Citation Analysis]
26 Azimzadeh-sadeghi S. Electronic and structural computing features of some chromene derivatives and evaluating their anticancer activities. MGC 2022;21:271-8. [DOI: 10.3233/mgc-210136] [Reference Citation Analysis]
27 Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, Hou C, Xu Y, Liu S, Wang G. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosensors and Bioelectronics 2022;201:113932. [DOI: 10.1016/j.bios.2021.113932] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
28 Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem . [DOI: 10.1007/s11426-021-1195-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Luo W, Chu H, Wu X, Ma P, Wu Q, Song D. Disposable biosensor based on novel ternary Ru-PEI@PCN-333(Al) self-enhanced electrochemiluminescence system for on-site determination of caspase-3 activity. Talanta 2022;239:123083. [PMID: 34861485 DOI: 10.1016/j.talanta.2021.123083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Su L, Sahmani S, Safaei B. Modified strain gradient-based nonlinear building sustainability of porous functionally graded composite microplates with and without cutouts using IGA. Engineering with Computers. [DOI: 10.1007/s00366-022-01606-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Cui B, Fu G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 2022;14:1679-99. [PMID: 35048101 DOI: 10.1039/d1nr07614k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
32 Ansari AA, Malhotra BD. Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews 2022;452:214282. [DOI: 10.1016/j.ccr.2021.214282] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
33 Zhang L, Su W, Liu S, Huang C, Ghalandari B, Divsalar A, Ding X. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. Phenomics 2022;2:18-32. [DOI: 10.1007/s43657-021-00032-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. Journal of Electroanalytical Chemistry 2022;904:115854. [DOI: 10.1016/j.jelechem.2021.115854] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
35 Zeraati M, Moghaddam-manesh M, Khodamoradi S, Hosseinzadegan S, Golpayegani A, Chauhan NPS, Sargazi G. Ultrasonic assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities. Journal of Molecular Structure 2022;1247:131315. [DOI: 10.1016/j.molstruc.2021.131315] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Mu Z, Tian J, Wang J, Zhou J, Bai L. A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated P-N-CNTs as signal enhanced indicator. Applied Surface Science 2022;573:151601. [DOI: 10.1016/j.apsusc.2021.151601] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
37 Wu X, Yang Z, Sang X, Tian X, Wei X. Aromatic amine electrochemical sensors based on a Co-MOF: a hydrogen bond-induced specific response. Dalton Trans 2022. [DOI: 10.1039/d2dt02049a] [Reference Citation Analysis]
38 Altintas C, Erucar I, Keskin S. MOF/COF hybrids as next generation materials for energy and biomedical applications. CrystEngComm 2022;24:7360-7371. [DOI: 10.1039/d2ce01296k] [Reference Citation Analysis]
39 Abdelhamid HN, Mathew AP. Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews 2022;451:214263. [DOI: 10.1016/j.ccr.2021.214263] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 62.0] [Reference Citation Analysis]
40 Du X, Dehghani M, Alsaadi N, Nejad MG, Saber-samandari S, Toghraie D, Su C, Nguyen HC. A femoral shape porous scaffold bio-nanocomposite fabricated using 3D printing and freeze-drying technique for orthopedic application. Materials Chemistry and Physics 2022;275:125302. [DOI: 10.1016/j.matchemphys.2021.125302] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
41 Guo C, Duan F, Zhang S, He L, Wang M, Chen J, Zhang J, Jia Q, Zhang Z, Du M. Heterostructured hybrids of metal–organic frameworks (MOFs) and covalent–organic frameworks (COFs). J Mater Chem A 2022;10:475-507. [DOI: 10.1039/d1ta06006f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
42 Qiao Y, Wang C, Bai FY, Sun LX, Xing YH. Two transition complexes based on 1H-benzimidazole-5,6-dicarboxylic acid: Synthesis, structure and photocatalytic degradation of dyes. MGC 2021. [DOI: 10.3233/mgc-210139] [Reference Citation Analysis]
43 Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian J, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends in Food Science & Technology 2021;118:569-88. [DOI: 10.1016/j.tifs.2021.10.024] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
44 Bazi Alahri M, Arshadizadeh R, Raeisi M, Khatami M, Sadat Sajadi M, Kamal Abdelbasset W, Akhmadeev R, Iravani S. Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. Inorganic Chemistry Communications 2021;134:108997. [DOI: 10.1016/j.inoche.2021.108997] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
45 Zeng N, Han C, Fu L, Cui G. Two New Ternary Cd(II) Coordination Polymers Containing Bis(thiabendazole) Ligands as Luminescent Sensors for Benzaldehyde and MnO4− Anions. J Inorg Organomet Polym 2021;31:4523-4531. [DOI: 10.1007/s10904-021-02086-y] [Reference Citation Analysis]
46 Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coordination Chemistry Reviews 2021;446:214121. [DOI: 10.1016/j.ccr.2021.214121] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 18.5] [Reference Citation Analysis]
47 Zeraati M, Alizadeh V, Kazemzadeh P, Safinejad M, Kazemian H, Sargazi G. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J Porous Mater 2022;29:257-67. [DOI: 10.1007/s10934-021-01164-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
48 Zhao H, Liu T, Cui L, Li Y, Yang F, Zhang X. Label-free and dual-amplified electrochemical bioanalysis of MUC1 based on an inorganic-organic polymer hybrid mimic peroxidase (AuNPs@Cu7S4@Cu/Mn-AzoPPOP) and catalytic hairpin assembly. Sensors and Actuators B: Chemical 2021;345:130332. [DOI: 10.1016/j.snb.2021.130332] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
49 Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. Electroanalysis 2022;34:148-60. [DOI: 10.1002/elan.202100309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Mirhosseini H, Shamspur T, Mostafavi A, Sargazi G. A novel ultrasonic assisted-reverse micelle procedure to synthesize Eu-MOF nanostructure with high sono/sonophotocatalytic activity: a systematic study for brilliant green dye removal. J Mater Sci: Mater Electron 2021;32:22840-59. [DOI: 10.1007/s10854-021-06762-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Ou H, Xie Q, Yang Q, Zhou J, Zeb A, Lin X, Chen X, Reddy RCK, Ma G. Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm 2021;23:5140-52. [DOI: 10.1039/d1ce00638j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]