BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews 2019;387:299-324. [DOI: 10.1016/j.ccr.2019.02.025] [Cited by in Crossref: 83] [Cited by in F6Publishing: 39] [Article Influence: 27.7] [Reference Citation Analysis]
Number Citing Articles
1 Silpcharu K, Sam-ang P, Chansaenpak K, Sukwattanasinitt M, Rashatasakhon P. Selective fluorescent sensors for gold(III) ion from N-picolyl sulfonamide spirobifluorene derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2020;402:112823. [DOI: 10.1016/j.jphotochem.2020.112823] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
2 Garcia MR, Requena MB, Pratavieira S, Moriyama LT, Becker M, Bagnato VS, Kurachi C, Magalhães DV. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX near-infrared fluorescence. Photodiagnosis and Photodynamic Therapy 2020;30:101680. [DOI: 10.1016/j.pdpdt.2020.101680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Zhou H, Yang H, Wang G, Gao A, Yuan Z. Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy. CPD 2020;25:4861-76. [DOI: 10.2174/1381612826666191219130033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
4 Camacho SA, Kobal MB, Almeida AM Jr, Toledo KA, Oliveira ON Jr, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020;194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hazel N, Orejas J, Ray SJ. Evaluation of solution-cathode glow discharge atomic emission spectrometry for the analysis of nanoparticle containing solutions. Spectrochimica Acta Part B: Atomic Spectroscopy 2021;176:106040. [DOI: 10.1016/j.sab.2020.106040] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Abdel-ghany S, Mahfouz M, Ashraf N, Sabit H, Cevik E, El-zawahri M. Gold nanoparticles induce G2/M cell cycle arrest and enhance the expression of E-cadherin in breast cancer cells. Inorganic and Nano-Metal Chemistry 2020;50:926-32. [DOI: 10.1080/24701556.2020.1728553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Ding S, He L, Bian X, Tian G. Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 2020;35:100920. [DOI: 10.1016/j.nantod.2020.100920] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
8 Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021;100:119-43. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Reference Citation Analysis]
9 Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A, Ghahremani F. Imaging and therapeutic capabilities of the AuNPs@MnCO3/Mn3O4, coated with PAA and integrated with folic acid, doxorubicin and propidium iodide for murine breast cancer. Journal of Drug Delivery Science and Technology 2022;67:102818. [DOI: 10.1016/j.jddst.2021.102818] [Reference Citation Analysis]
10 Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN Appl Sci 2021;3. [DOI: 10.1007/s42452-021-04329-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zabanran M, Asadi M, Zare-sadeghi A, Abbasian Ardakani A, Shakeri-zadeh A, Komeili A, Kamrava SK, Ghalandari B. The effects of gold nanoparticles characteristics and laser irradiation conditions on spatiotemporal temperature pattern of an agar phantom: A simulation and MR thermometry study. Optik 2020;202:163718. [DOI: 10.1016/j.ijleo.2019.163718] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mahajan S, Raval N, Kalyane D, Anup N, Maheshwari R, Tambe V, Kalia K, Tekade RK. NanoGold-core dendrimeric seeds for combined chemo-, photothermal-, and photodynamic therapy of cancer. Journal of Drug Delivery Science and Technology 2020;58:101814. [DOI: 10.1016/j.jddst.2020.101814] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021;335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Vodyashkin AA, Rizk MGH, Kezimana P, Kirichuk AA, Stanishevskiy YM. Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. ChemEngineering 2021;5:69. [DOI: 10.3390/chemengineering5040069] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Rizzi V, Gubitosa J, Fini P, Nuzzo S, Agostiano A, Cosma P. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. J Photochem Photobiol B 2021;224:112309. [PMID: 34563935 DOI: 10.1016/j.jphotobiol.2021.112309] [Reference Citation Analysis]
16 Asadi M, Beik J, Hashemian R, Laurent S, Farashahi A, Mobini M, Ghaznavi H, Shakeri-zadeh A. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Medica 2019;66:124-32. [DOI: 10.1016/j.ejmp.2019.10.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
17 Dortez S, González MC, Crevillen AG, Escarpa A. Gold nanostructure-related non-plasmon resonance absorption band as a fingerprint of ortho-alkyl substituted phenolic compounds. Microchemical Journal 2021;171:106788. [DOI: 10.1016/j.microc.2021.106788] [Reference Citation Analysis]
18 Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Reference Citation Analysis]
19 Ravichandran G, Rengan AK. Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Appl Nano Mater 2020;3:9542-59. [DOI: 10.1021/acsanm.0c01785] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
20 Baffou G, Cichos F, Quidant R. Applications and challenges of thermoplasmonics. Nat Mater 2020;19:946-58. [DOI: 10.1038/s41563-020-0740-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 20.0] [Reference Citation Analysis]
21 Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. Nanotechnology 2021;32. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Reference Citation Analysis]
22 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Reference Citation Analysis]
23 Beik J, Asadi M, Khoei S, Laurent S, Abed Z, Mirrahimi M, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-zadeh A. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology 2019;199:111599. [DOI: 10.1016/j.jphotobiol.2019.111599] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 11.3] [Reference Citation Analysis]
24 Katagiri M, Cuya Huaman JL, Matsumoto T, Suzuki K, Miyamura H, Balachandran J. Magneto-Plasmonic Co@Pt@Au Nanocrystals for Biosensing and Therapeutics. ACS Appl Nano Mater 2020;3:418-27. [DOI: 10.1021/acsanm.9b02040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
25 Lemonier S, Marty J, Fitremann J. Polysiloxanes Modified by Thiol‐Ene Reaction and Their Interaction with Gold Nanoparticles. HCA 2019;102. [DOI: 10.1002/hlca.201900180] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Adv Therap 2021;4:2000218. [DOI: 10.1002/adtp.202000218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kang JK, Kim JC, Shin Y, Han SM, Won WR, Her J, Park JY, Oh KT. Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch Pharm Res 2020;43:46-57. [PMID: 31993968 DOI: 10.1007/s12272-020-01206-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
29 Zograf GP, Petrov MI, Makarov SV, Kivshar YS. All-dielectric thermonanophotonics. Adv Opt Photon 2021;13:643. [DOI: 10.1364/aop.426047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Tabei M, Zeinizade E, Beik J, Kamrava SK, Nasiri Z, Ghaznavi H, Shakeri-zadeh A. Insights into Nano-Photo-Thermal Therapy of Cancer: The Kinetics of Cell Death and Effect on Cell Cycle. ACAMC 2020;20:612-21. [DOI: 10.2174/1871520620666200129111332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Nikzamir M, Akbarzadeh A, Panahi Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. Journal of Drug Delivery Science and Technology 2021;61:102316. [DOI: 10.1016/j.jddst.2020.102316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res 2020;13:2898-908. [DOI: 10.1007/s12274-020-2992-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
34 Cheng Y, Ji Y, Tong J. Triple stimuli-responsive supramolecular nanoassembly with mitochondrial targetability for chemophotothermal therapy. Journal of Controlled Release 2020;327:35-49. [DOI: 10.1016/j.jconrel.2020.08.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mohammadinejad R, Madamsetty VS, Kumar A, Varzandeh M, Dehshahri A, Zarrabi A, Sharififar F, Mohammadi M, Fahimipour A, Ramakrishna S. Electrospun nanocarriers for delivering natural products for cancer therapy. Trends in Food Science & Technology 2021;118:887-904. [DOI: 10.1016/j.tifs.2021.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
36 Xie J, Liao B, Tang R. Functional Application of Sulfur-Containing Spice Compounds. J Agric Food Chem 2020;68:12505-26. [DOI: 10.1021/acs.jafc.0c05002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-zadeh A, Ebrahimi F, Komeili A, Ghalandari B, Ghaznavi H, Kamrava SK, Moustakis C. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences 2020;145:105235. [DOI: 10.1016/j.ejps.2020.105235] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
38 Depciuch J, Stec M, Maximenko A, Baran J, Parlinska-wojtan M. Gold nanodahlias: potential nanophotosensitizer in photothermal anticancer therapy. J Mater Sci 2020;55:2530-43. [DOI: 10.1007/s10853-019-04187-z] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
39 Fernández G, Bernardo L, Villanueva A, Pleixats R. Gold nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the synthesis of propargylamines and the cycloisomerization of γ-alkynoic acids. New J Chem 2020;44:6130-41. [DOI: 10.1039/d0nj00284d] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Ghanbari-movahed M, Shiri Varnamkhasti B, Shourian M. Inhibiting Notch activity in breast cancer stem cells by functionalized gold nanoparticles with gamma-secretase inhibitor DAPT and vitamin C. Chem Pap . [DOI: 10.1007/s11696-021-01936-w] [Reference Citation Analysis]
41 Moore JA, Chow JCL. Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Ex 2021;2:022001. [DOI: 10.1088/2632-959x/abddd3] [Cited by in Crossref: 11] [Article Influence: 11.0] [Reference Citation Analysis]
42 Javed B, Raja NI, Nadhman A, Mashwani Z. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Appl Nanosci 2020;10:2057-67. [DOI: 10.1007/s13204-020-01355-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
43 Mirrahimi M, Abed Z, Beik J, Shiri I, Shiralizadeh Dezfuli A, Mahabadi VP, Kamran Kamrava S, Ghaznavi H, Shakeri-zadeh A. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacological Research 2019;143:178-85. [DOI: 10.1016/j.phrs.2019.01.005] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 20.0] [Reference Citation Analysis]
44 Javed B, Nadhman A, Razzaq A, Mashwani Z. One-pot phytosynthesis of nano-silver from Mentha longifolia L.: their characterization and evaluation of photodynamic potential. Mater Res Express 2020;7:055401. [DOI: 10.1088/2053-1591/ab903b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
45 Beik J, Asadi M, Mirrahimi M, Abed Z, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-zadeh A. An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Appl Phys B 2019;125. [DOI: 10.1007/s00340-019-7316-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021;6:14082-99. [DOI: 10.1002/slct.202103418] [Reference Citation Analysis]
47 Meireles IBDCJ, Cipreste MF, Gastelois PL, Macedo WAA, Gomes DA, de Sousa EMB. Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform bioapplication in photohyperthermia. Nanotechnology 2021;32. [PMID: 34547742 DOI: 10.1088/1361-6528/ac28db] [Reference Citation Analysis]
48 Arosio P, Avolio M, Gargano M, Orsini F, Gallo S, Melada J, Bonizzoni L, Ludwig N, Veronese I. Magnetic stimulation of gold fiducial markers used in Image-Guided Radiation Therapy: Evidences of hyperthermia effects. Measurement 2020;151:107242. [DOI: 10.1016/j.measurement.2019.107242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Movahedi MM, Alamzadeh Z, Hosseini-Nami S, Shakeri-Zadeh A, Taheripak G, Ahmadi A, Zare-Sadeghi A, Ghaznavi H, Mehdizadeh A. Investigating the mechanisms behind extensive death in human cancer cells following nanoparticle assisted photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther 2020;29:101600. [PMID: 31731067 DOI: 10.1016/j.pdpdt.2019.101600] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
50 Zhang J, Cui YX, Feng XN, Cheng M, Tang AN, Kong DM. pH-Controlled Intracellular in Situ Reversible Assembly of a Photothermal Agent for Smart Chemo-Photothermal Synergetic Therapy and ATP Imaging. ACS Appl Mater Interfaces 2019;11:39624-32. [PMID: 31573175 DOI: 10.1021/acsami.9b14186] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
51 Tian J, Huang B, Nawaz MH, Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews 2020;420:213410. [DOI: 10.1016/j.ccr.2020.213410] [Cited by in Crossref: 40] [Cited by in F6Publishing: 15] [Article Influence: 20.0] [Reference Citation Analysis]
52 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Ma B, Sun C. Tumor pH-triggered “charge conversion” nanocarriers with on-demand drug release for precise cancer therapy. J Mater Chem B 2020;8:9351-61. [DOI: 10.1039/d0tb01692f] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Gao M, Tang BZ. AIE-based cancer theranostics. Coordination Chemistry Reviews 2020;402:213076. [DOI: 10.1016/j.ccr.2019.213076] [Cited by in Crossref: 59] [Cited by in F6Publishing: 26] [Article Influence: 29.5] [Reference Citation Analysis]
55 Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 2021;330:49-60. [PMID: 33340564 DOI: 10.1016/j.jconrel.2020.12.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
56 Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020;96:1087-103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
57 Khani T, Alamzadeh Z, Sarikhani A, Mousavi M, Mirrahimi M, Tabei M, Irajirad R, Abed Z, Beik J. Fe3O4@Au core-shell hybrid nanocomposite for MRI-guided magnetic targeted photo-chemotherapy. Lasers Med Sci 2022. [PMID: 35066676 DOI: 10.1007/s10103-021-03486-9] [Reference Citation Analysis]
58 He W, Ma G, Shen Q, Tang Z. Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials 2022;12:1738. [DOI: 10.3390/nano12101738] [Reference Citation Analysis]
59 Tran PHL, Tran TTD. Current Designs and Developments of Fucoidan-based Formulations for Cancer Therapy. Curr Drug Metab 2019;20:933-41. [PMID: 31589118 DOI: 10.2174/1389200220666191007154723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Ahmad T, Sarwar R, Iqbal A, Bashir U, Farooq U, Halim SA, Khan A, Al-harrasi A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine 2020;15:1221-37. [DOI: 10.2217/nnm-2020-0051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Grimaldi F, Pucciarelli M, Gavriilidis A, Dobson P, Lettieri P. Anticipatory life cycle assessment of gold nanoparticles production: Comparison of milli-continuous flow and batch synthesis. Journal of Cleaner Production 2020;269:122335. [DOI: 10.1016/j.jclepro.2020.122335] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
62 Zheng Y, Jiang H, Wang X. Facet-dependent antibacterial activity of Au nanocrystals. Chinese Chemical Letters 2020;31:3183-9. [DOI: 10.1016/j.cclet.2020.05.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
63 Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Appl Bio Mater 2022. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Reference Citation Analysis]